Paper 1, Section II, H

Number Fields | Part II, 2017

Let OL\mathcal{O}_{L} be the ring of integers in a number field LL, and let aOL\mathfrak{a} \leqslant \mathcal{O}_{L} be a non-zero ideal of OL\mathcal{O}_{L}.

(a) Show that aZ{0}\mathfrak{a} \cap \mathbb{Z} \neq\{0\}.

(b) Show that OL/a\mathcal{O}_{L} / \mathfrak{a} is a finite abelian group.

(c) Show that if xLx \in L has xaax \mathfrak{a} \subseteq \mathfrak{a}, then xOLx \in \mathcal{O}_{L}.

(d) Suppose [L:Q]=2[L: \mathbb{Q}]=2, and a=b,α\mathfrak{a}=\langle b, \alpha\rangle, with bZb \in \mathbb{Z} and αOL\alpha \in \mathcal{O}_{L}. Show that b,αb,αˉ\langle b, \alpha\rangle\langle b, \bar{\alpha}\rangle is principal.

[You may assume that a\mathfrak{a} has an integral basis.]

Typos? Please submit corrections to this page on GitHub.