Paper 4, Section II, 22F22 F

Analysis of Functions | Part II, 2017

Consider Rn\mathbb{R}^{n} with the Lebesgue measure. Denote by Ff(ξ)=Rne2iπxξf(x)dx\mathcal{F} f(\xi)=\int_{\mathbb{R}^{n}} e^{-2 i \pi x \cdot \xi} f(x) d x the Fourier transform of fL1(Rn)f \in L^{1}\left(\mathbb{R}^{n}\right) and by f^\hat{f} the Fourier-Plancherel transform of fL2(Rn)f \in L^{2}\left(\mathbb{R}^{n}\right). Let χR(ξ):=(1ξR)χξR\chi_{R}(\xi):=\left(1-\frac{|\xi|}{R}\right) \chi_{|\xi| \leqslant R} for R>0R>0 and define for sR+s \in \mathbb{R}_{+}

Hs(Rn):={fL2(Rn)(1+2)s/2f^()L2(Rn)}H^{s}\left(\mathbb{R}^{n}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right) \mid\left(1+|\cdot|^{2}\right)^{s / 2} \hat{f}(\cdot) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}

(i) Prove that Hs(Rn)H^{s}\left(\mathbb{R}^{n}\right) is a vector subspace of L2(Rn)L^{2}\left(\mathbb{R}^{n}\right), and is a Hilbert space for the inner product f,g:=Rn(1+ξ2)sf^(ξ)g^(ξ)dξ\langle f, g\rangle:=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \hat{f}(\xi) \overline{\hat{g}(\xi)} d \xi, where zˉ\bar{z} denotes the complex conjugate of zCz \in \mathbb{C}.

(ii) Construct a function fHs(R),s(0,1/2)f \in H^{s}(\mathbb{R}), s \in(0,1 / 2), that is not almost everywhere equal to a continuous function.

(iii) For fL1(Rn)f \in L^{1}\left(\mathbb{R}^{n}\right), prove that FR:xRnFf(ξ)χR(ξ)e2iπxξdξF_{R}: x \mapsto \int_{\mathbb{R}^{n}} \mathcal{F} f(\xi) \chi_{R}(\xi) e^{2 i \pi x \cdot \xi} d \xi is a well-defined function and that FRL1(Rn)F_{R} \in L^{1}\left(\mathbb{R}^{n}\right) converges to ff in L1(Rn)L^{1}\left(\mathbb{R}^{n}\right) as R+R \rightarrow+\infty.

[Hint: Prove that FR=KRfF_{R}=K_{R} * f where KRK_{R} is an approximation of the unit as R+.]R \rightarrow+\infty .]

(iv) Deduce that if fL1(Rn)f \in L^{1}\left(\mathbb{R}^{n}\right) and (1+2)s/2Ff()L2(Rn)\left(1+|\cdot|^{2}\right)^{s / 2} \mathcal{F} f(\cdot) \in L^{2}\left(\mathbb{R}^{n}\right) then fHs(Rn)f \in H^{s}\left(\mathbb{R}^{n}\right).

[Hint: Prove that: (1) there is a sequence Rk+R_{k} \rightarrow+\infty such that KRkfK_{R_{k}} * f converges to ff almost everywhere; (2) KRfK_{R} * f is uniformly bounded in L2(Rn)L^{2}\left(\mathbb{R}^{n}\right) as R+R \rightarrow+\infty.]

Typos? Please submit corrections to this page on GitHub.