Paper 4, Section II, F
Let be a complex Hilbert space with inner product and let be a bounded linear map.
(i) Define the spectrum , the point spectrum , the continuous spectrum , and the residual spectrum .
(ii) Show that is self-adjoint and that . Show that if is compact then so is .
(iii) Assume that is compact. Prove that has a singular value decomposition: for or , there exist orthonormal systems and and such that, for any ,
[You may use the spectral theorem for compact self-adjoint linear operators.]
Typos? Please submit corrections to this page on GitHub.