Paper 2, Section II, A

Integrable Systems | Part II, 2017

Let UU and VV be non-singular N×NN \times N matrices depending on (x,t,λ)(x, t, \lambda) which are periodic in xx with period 2π2 \pi. Consider the associated linear problem

Ψx=UΨ,Ψt=VΨ\Psi_{x}=U \Psi, \quad \Psi_{t}=V \Psi

for the vector Ψ=Ψ(x,t;λ)\Psi=\Psi(x, t ; \lambda). On the assumption that these equations are compatible, derive the zero curvature equation for (U,V)(U, V).

Let W=W(x,t,λ)W=W(x, t, \lambda) denote the N×NN \times N matrix satisfying

Wx=UW,W(0,t,λ)=INW_{x}=U W, \quad W(0, t, \lambda)=I_{N}

where INI_{N} is the N×NN \times N identity matrix. You should assume WW is unique. By considering (WtVW)x\left(W_{t}-V W\right)_{x}, show that the matrix w(t,λ)=W(2π,t,λ)w(t, \lambda)=W(2 \pi, t, \lambda) satisfies the Lax equation

wt=[v,w],v(t,λ)V(2π,t,λ)w_{t}=[v, w], \quad v(t, \lambda) \equiv V(2 \pi, t, \lambda)

Deduce that {tr(wk)}k1\left\{\operatorname{tr}\left(w^{k}\right)\right\}_{k \geqslant 1} are first integrals.

By considering the matrices

12iλ[cosuisinuisinucosu],i2[2λuxux2λ]\frac{1}{2 \mathrm{i} \lambda}\left[\begin{array}{cc} \cos u & -\mathrm{i} \sin u \\ \mathrm{i} \sin u & -\cos u \end{array}\right], \quad \frac{\mathrm{i}}{2}\left[\begin{array}{cc} 2 \lambda & u_{x} \\ u_{x} & -2 \lambda \end{array}\right]

show that the periodic Sine-Gordon equation uxt=sinuu_{x t}=\sin u has infinitely many first integrals. [You need not prove anything about independence.]

Typos? Please submit corrections to this page on GitHub.