Paper 1, Section II, E

Further Complex Methods | Part II, 2017

The Riemann zeta function is defined by

ζR(s)=n=1ns\zeta_{R}(s)=\sum_{n=1}^{\infty} n^{-s}

for Re(s)>1\operatorname{Re}(s)>1.

Show that

ζR(s)=1Γ(s)0ts1et1dt\zeta_{R}(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1}}{e^{t}-1} d t

Let I(s)I(s) be defined by

I(s)=Γ(1s)2πiCts1et1dtI(s)=\frac{\Gamma(1-s)}{2 \pi i} \int_{C} \frac{t^{s-1}}{e^{-t}-1} d t

where CC is the Hankel contour.

Show that I(s)I(s) provides an analytic continuation of ζR(s)\zeta_{R}(s) for a range of ss which should be determined.

Hence evaluate ζR(1)\zeta_{R}(-1).

Typos? Please submit corrections to this page on GitHub.