Paper 4, Section II, 14E14 \mathrm{E}

Classical Dynamics | Part II, 2017

Explain how geodesics of a Riemannian metric

g=gab(xc)dxadxbg=g_{a b}\left(x^{c}\right) d x^{a} d x^{b}

arise from the kinetic Lagrangian

L=12gab(xc)x˙ax˙b\mathcal{L}=\frac{1}{2} g_{a b}\left(x^{c}\right) \dot{x}^{a} \dot{x}^{b}

where a,b=1,,na, b=1, \ldots, n.

Find geodesics of the metric on the upper half plane

Σ={(x,y)R2,y>0}\Sigma=\left\{(x, y) \in \mathbb{R}^{2}, y>0\right\}

with the metric

g=dx2+dy2y2g=\frac{d x^{2}+d y^{2}}{y^{2}}

and sketch the geodesic containing the points (2,3)(2,3) and (10,3)(10,3).

[Hint: Consider dy/dx.]d y / d x .]

Typos? Please submit corrections to this page on GitHub.