Paper 4, Section II, A

Numerical Analysis | Part II, 2017

(a) The diffusion equation

ut=2ux2,0x1,0tT\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leqslant x \leqslant 1, \quad 0 \leqslant t \leqslant T

is approximated by the Crank-Nicolson scheme

umn+112μ(um1n+12umn+1+um+1n+1)=umn+12μ(um1n2umn+um+1n)u_{m}^{n+1}-\frac{1}{2} \mu\left(u_{m-1}^{n+1}-2 u_{m}^{n+1}+u_{m+1}^{n+1}\right)=u_{m}^{n}+\frac{1}{2} \mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right)

with m=1,,Mm=1, \ldots, M. Here μ=k/h2,k=Δt,h=Δx=1M+1\mu=k / h^{2}, k=\Delta t, h=\Delta x=\frac{1}{M+1}, and umnu_{m}^{n} is an approximation to u(mh,nk)u(m h, n k). Assuming that u(0,t)=u(1,t)=M+10u(0, t)=u(1, t) \stackrel{M+1}{=} 0, show that the above scheme can be written in the form

Bun+1=Cun,0nT/k1B \mathbf{u}^{n+1}=C \mathbf{u}^{n}, \quad 0 \leqslant n \leqslant T / k-1

where un=[u1n,,uMn]T\mathbf{u}^{n}=\left[u_{1}^{n}, \ldots, u_{M}^{n}\right]^{T} and the real matrices BB and CC should be found. Using matrix analysis, find the range of μ>0\mu>0 for which the scheme is stable.

[Hint: All Toeplitz symmetric tridiagonal (TST) matrices have the same set of orthogonal eigenvectors, and a TST matrix with the elements ai,i=aa_{i, i}=a and ai,i±1=ba_{i, i \pm 1}=b has the eigenvalues λk=a+2bcosπkM+1\lambda_{k}=a+2 b \cos \frac{\pi k}{M+1}. ]

(b) The wave equation

2ut2=2ux2,xR,t0\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \mathbb{R}, \quad t \geqslant 0

with given initial conditions for uu and u/t\partial u / \partial t, is approximated by the scheme

umn+12umn+umn1=μ(um+1n2umn+um1n),u_{m}^{n+1}-2 u_{m}^{n}+u_{m}^{n-1}=\mu\left(u_{m+1}^{n}-2 u_{m}^{n}+u_{m-1}^{n}\right),

with the Courant number now μ=k2/h2\mu=k^{2} / h^{2}. Applying the Fourier technique, find the range of μ>0\mu>0 for which the method is stable.

Typos? Please submit corrections to this page on GitHub.