Paper 4, Section II, H

Number Theory | Part II, 2015

State the Chinese Remainder Theorem.

Let NN be an odd positive integer. Define the Jacobi symbol (aN)\left(\frac{a}{N}\right). Which of the following statements are true, and which are false? Give a proof or counterexample as appropriate.

(i) If (aN)=1\left(\frac{a}{N}\right)=1 then the congruence x2a(modN)x^{2} \equiv a(\bmod N) is soluble.

(ii) If NN is not a square then a=1N(aN)=0\sum_{a=1}^{N}\left(\frac{a}{N}\right)=0.

(iii) If NN is composite then there exists an integer a coprime to NN with

aN1≢1(modN)a^{N-1} \not \equiv 1 \quad(\bmod N)

(iv) If NN is composite then there exists an integer aa coprime to NN with

a(N1)/2≢(aN)(modN)a^{(N-1) / 2} \not \equiv\left(\frac{a}{N}\right) \quad(\bmod N)

Typos? Please submit corrections to this page on GitHub.