Paper 2, Section II, B

Further Complex Methods | Part II, 2015

The Riemann zeta function is defined by the sum

ζ(s)=n=1ns\zeta(s)=\sum_{n=1}^{\infty} n^{-s}

which converges for Res>1\operatorname{Re} s>1. Show that

ζ(s)=1Γ(s)0ts1et1dt,Res>1\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1}}{e^{t}-1} d t, \quad \operatorname{Re} s>1

The analytic continuation of ζ(s)\zeta(s) is given by the Hankel contour integral

ζ(s)=Γ(1s)2πi0+ts1et1dt\zeta(s)=\frac{\Gamma(1-s)}{2 \pi i} \int_{-\infty}^{0+} \frac{t^{s-1}}{e^{-t}-1} d t

Verify that this agrees with the integral ()(*) above when Re s>1s>1 and ss is not an integer. [You may assume Γ(s)Γ(1s)=π/sinπs\Gamma(s) \Gamma(1-s)=\pi / \sin \pi s.] What happens when s=2,3,4,s=2,3,4, \ldots ?

Evaluate ζ(0)\zeta(0). Show that (et1)1+12\left(e^{-t}-1\right)^{-1}+\frac{1}{2} is an odd function of tt and hence, or otherwise, show that ζ(2n)=0\zeta(-2 n)=0 for any positive integer nn.

Typos? Please submit corrections to this page on GitHub.