Paper 4, Section II, C

Asymptotic Methods | Part II, 2015

Consider the ordinary differential equation

d2udz2+f(z)dudz+g(z)u=0\frac{d^{2} u}{d z^{2}}+f(z) \frac{d u}{d z}+g(z) u=0

where

f(z)m=0fmzm,g(z)m=0gmzm,zf(z) \sim \sum_{m=0}^{\infty} \frac{f_{m}}{z^{m}}, \quad g(z) \sim \sum_{m=0}^{\infty} \frac{g_{m}}{z^{m}}, \quad z \rightarrow \infty

and fm,gmf_{m}, g_{m} are constants. Look for solutions in the asymptotic form

u(z)=eλzzμ[1+az+bz2+O(1z3)],zu(z)=e^{\lambda z} z^{\mu}\left[1+\frac{a}{z}+\frac{b}{z^{2}}+O\left(\frac{1}{z^{3}}\right)\right], \quad z \rightarrow \infty

and determine λ\lambda in terms of (f0,g0)\left(f_{0}, g_{0}\right), as well as μ\mu in terms of (λ,f0,f1,g1)\left(\lambda, f_{0}, f_{1}, g_{1}\right).

Deduce that the Bessel equation

d2udz2+1zdudz+(1ν2z2)u=0\frac{d^{2} u}{d z^{2}}+\frac{1}{z} \frac{d u}{d z}+\left(1-\frac{\nu^{2}}{z^{2}}\right) u=0

where ν\nu is a complex constant, has two solutions of the form

u(1)(z)=eizz1/2[1+a(1)z+O(1z2)],zu(2)(z)=eizz1/2[1+a(2)z+O(1z2)],z\begin{aligned} &u^{(1)}(z)=\frac{e^{i z}}{z^{1 / 2}}\left[1+\frac{a^{(1)}}{z}+O\left(\frac{1}{z^{2}}\right)\right], \quad z \rightarrow \infty \\ &u^{(2)}(z)=\frac{e^{-i z}}{z^{1 / 2}}\left[1+\frac{a^{(2)}}{z}+O\left(\frac{1}{z^{2}}\right)\right], \quad z \rightarrow \infty \end{aligned}

and determine a(1)a^{(1)} and a(2)a^{(2)} in terms of ν.\nu .

Can the above asymptotic expansions be valid for all arg(z)\arg (z), or are they valid only in certain domains of the complex zz-plane? Justify your answer briefly.

Typos? Please submit corrections to this page on GitHub.