Paper 2, Section II, A

Principles of Quantum Mechanics | Part II, 2015

Express the spin operator S\mathbf{S} for a particle of spin 12\frac{1}{2} in terms of the Pauli matrices σ=(σ1,σ2,σ3)\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) where

σ1=(0110),σ2=(0ii0),σ3=(1001)\sigma_{1}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)

Show that (nσ)2=I(\mathbf{n} \cdot \boldsymbol{\sigma})^{2}=\mathbb{I} for any unit vector n\mathbf{n} and deduce that

eiθnS/=Icos(θ/2)i(nσ)sin(θ/2).e^{-i \theta \mathbf{n} \cdot \mathbf{S} / \hbar}=\mathbb{I} \cos (\theta / 2)-i(\mathbf{n} \cdot \boldsymbol{\sigma}) \sin (\theta / 2) .

The space of states VV for a particle of spin 12\frac{1}{2} has basis states ,|\uparrow\rangle,|\downarrow\rangle which are eigenstates of S3S_{3} with eigenvalues 12\frac{1}{2} \hbar and 12-\frac{1}{2} \hbar respectively. If the Hamiltonian for the particle is H=12ασ1H=\frac{1}{2} \alpha \hbar \sigma_{1}, find

eitH/ and eitH/e^{-i t H / \hbar}|\uparrow\rangle \quad \text { and } \quad e^{-i t H / \hbar}|\downarrow\rangle

as linear combinations of the basis states.

The space of states for a system of two spin 12\frac{1}{2} particles is VVV \otimes V. Write down explicit expressions for the joint eigenstates of J2\mathbf{J}^{2} and J3J_{3}, where J\mathbf{J} is the sum of the spin operators for the particles.

Suppose that the two-particle system has Hamiltonian H=12λ(σ1IIσ1)H=\frac{1}{2} \lambda \hbar\left(\sigma_{1} \otimes \mathbb{I}-\mathbb{I} \otimes \sigma_{1}\right) and that at time t=0t=0 the system is in the state with J3J_{3} eigenvalue \hbar. Calculate the probability that at time t>0t>0 the system will be measured to be in the state with J2\mathbf{J}^{2} eigenvalue zero.

Typos? Please submit corrections to this page on GitHub.