Paper 3, Section II, F
(i) Let be an affine variety. Define the tangent space of at a point . Say what it means for the variety to be singular at .
(ii) Find the singularities of the surface in given by the equation
(iii) Consider . Let be the blowup of the origin. Compute the proper transform of in , and show it is non-singular.
Typos? Please submit corrections to this page on GitHub.