Part II, 2015
Part II, 2015
Jump to course
Paper 1, Section II, F
commentLet be an algebraically closed field.
(i) Let and be affine varieties defined over . Given a map , define what it means for to be a morphism of affine varieties.
(ii) With still affine varieties over , show that there is a one-to-one correspondence between , the set of morphisms between and , and , the set of -algebra homomorphisms between and .
(iii) Let be given by . Show that the image of is an affine variety , and find a set of generators for .
Paper 2, Section II, F
comment(i) Define the radical of an ideal.
(ii) Assume the following statement: If is an algebraically closed field and is an ideal, then either or . Prove the Hilbert Nullstellensatz, namely that if with algebraically closed, then
(iii) Show that if is a commutative ring and are ideals, then
(iv) Is
Give a proof or a counterexample.
Paper 3, Section II, F
comment(i) Let be an affine variety. Define the tangent space of at a point . Say what it means for the variety to be singular at .
(ii) Find the singularities of the surface in given by the equation
(iii) Consider . Let be the blowup of the origin. Compute the proper transform of in , and show it is non-singular.
Paper 4, Section II, F
comment(i) Explain how a linear system on a curve may induce a morphism from to projective space. What condition on the linear system is necessary to yield a morphism such that the pull-back of a hyperplane section is an element of the linear system? What condition is necessary to imply the morphism is an embedding?
(ii) State the Riemann-Roch theorem for curves.
(iii) Show that any divisor of degree 5 on a curve of genus 2 induces an embedding.
Paper 1, Section II, H
commentState carefully a version of the Seifert-van Kampen theorem for a cover of a space by two closed sets.
Let be the space obtained by gluing together a Möbius band and a torus along a homeomorphism of the boundary of with . Find a presentation for the fundamental group of , and hence show that it is infinite and non-abelian.
Paper 2, Section II, H
commentDefine what it means for to be a covering map, and what it means to say that is a universal cover.
Let be a universal cover, be a locally path connected subspace, and be a path component containing a point with . Show that the restriction is a covering map, and that under the Galois correspondence it corresponds to the subgroup
of .
Paper 3, Section II, H
commentLet and be simplicial complexes. Explain what is meant by a simplicial approximation to a continuous map . State the simplicial approximation theorem, and define the homomorphism induced on homology by a continuous map between triangulable spaces. [You do not need to show that the homomorphism is welldefined.]
Let be given by for a positive integer , where is considered as the unit complex numbers. Compute the map induced by on homology.
Paper 4, Section II, H
commentState the Mayer-Vietoris theorem for a simplicial complex which is the union of two subcomplexes and . Explain briefly how the connecting homomorphism is defined.
If is the union of subcomplexes , with , such that each intersection
is either empty or has the homology of a point, then show that
Construct examples for each showing that this is sharp.
Paper 1, Section II, A
commentDefine the Rayleigh-Ritz quotient for a normalisable state of a quantum system with Hamiltonian . Given that the spectrum of is discrete and that there is a unique ground state of energy , show that and that equality holds if and only if is the ground state.
A simple harmonic oscillator (SHO) is a particle of mass moving in one dimension subject to the potential
Estimate the ground state energy of the SHO by using the ground state wavefunction for a particle in an infinite potential well of width , centred on the origin (the potential is for and for . Take as the variational parameter.
Perform a similar estimate for the energy of the first excited state of the SHO by using the first excited state of the infinite potential well as a trial wavefunction.
Is the estimate for necessarily an upper bound? Justify your answer.
You may use : and
Paper 2, Section II, A
commentA beam of particles of mass and energy is incident on a target at the origin described by a spherically symmetric potential . Assuming the potential decays rapidly as , write down the asymptotic form of the wavefunction, defining the scattering amplitude .
Consider a free particle with energy . State, without proof, the general axisymmetric solution of the Schrödinger equation for in terms of spherical Bessel and Neumann functions and , and Legendre polynomials . Hence define the partial wave phase shifts for scattering from a potential and derive the partial wave expansion for in terms of phase shifts.
Now suppose
with . Show that the S-wave phase shift obeys
where . Deduce that for an S-wave solution
[You may assume :
and as
Paper 3, Section II, A
commentA particle of mass and energy moves in one dimension subject to a periodic potential
Determine the corresponding Floquet matrix . [You may assume without proof that for the Schrödinger equation with potential the wavefunction is continuous at and satisfies
Explain briefly, with reference to Bloch's theorem, how restrictions on the energy of a Bloch state can be derived from . Deduce that for the potential above, is confined to a range whose boundary values are determined by
Sketch the left-hand and right-hand sides of each of these equations as functions of . Hence show that there is exactly one allowed band of negative energies with either (i) or (ii) and determine the values of for which each of these cases arise. [You should not attempt to evaluate the constants ]
Comment briefly on the limit with fixed.
Paper 4, Section II,
commentLet be a Bravais lattice with basis vectors . Define the reciprocal lattice and write down basis vectors for in terms of the basis for .
A finite crystal consists of identical atoms at sites of given by
A particle of mass scatters off the crystal; its wavevector is before scattering and after scattering, with . Show that the scattering amplitude in the Born approximation has the form
where is the potential due to a single atom at the origin and depends on the crystal structure. [You may assume that in the Born approximation the amplitude for scattering off a potential is where tilde denotes the Fourier transform.]
Derive an expression for that is valid when . Show also that when is a reciprocal lattice vector is equal to the total number of atoms in the crystal. Comment briefly on the significance of these results.
Now suppose that is a face-centred-cubic lattice:
where is a constant. Show that for a particle incident with , enhanced scattering is possible for at least two values of the scattering angle, and , related by
Paper 1, Section II, K
comment(a) Give the definition of a birth and death chain in terms of its generator. Show that a measure is invariant for a birth and death chain if and only if it solves the detailed balance equations.
(b) There are servers in a post office and a single queue. Customers arrive as a Poisson process of rate and the service times at each server are independent and exponentially distributed with parameter . Let denote the number of customers in the post office at time . Find conditions on and for to be positive recurrent, null recurrent and transient, justifying your answers.
Paper 2, Section II,
comment(i) Defne a Poisson process on with rate . Let and be two independent Poisson processes on of rates and respectively. Prove that is also a Poisson process and find its rate.
(ii) Let be a discrete time Markov chain with transition matrix on the finite state space . Find the generator of the continuous time Markov chain in terms of and . Show that if is an invariant distribution for , then it is also invariant for .
Suppose that has an absorbing state . If and are the absorption times for and respectively, write an equation that relates and , where .
[Hint: You may want to prove that if are i.i.d. non-negative random variables with and is an independent non-negative random variable, then
Paper 3, Section II, K
comment(i) Let be a Poisson process of parameter . Let be obtained by taking each point of and, independently of the other points, keeping it with probability . Show that is another Poisson process and find its intensity. Show that for every fixed the random variables and are independent.
(ii) Suppose we have bins, and balls arrive according to a Poisson process of rate 1 . Upon arrival we choose a bin uniformly at random and place the ball in it. We let be the maximum number of balls in any bin at time . Show that
[You may use the fact that if is a Poisson random variable of mean 1 , then
Paper 4, Section II, K
comment(i) Let be a Markov chain on and . Let be the hitting time of and denote the total time spent at by the chain before hitting . Show that if , then
(ii) Define the Moran model and show that if is the number of individuals carrying allele at time and is the fixation time of allele , then
Show that conditionally on fixation of an allele being present initially in individuals,
Paper 1, Section II, C
comment(a) State the integral expression for the gamma function , for , and express the integral
in terms of . Explain why the constraints on are necessary.
(b) Show that
for some constants and . Determine the constants and , and express in terms of the gamma function.
State without proof the basic result needed for the rigorous justification of the above asymptotic formula.
[You may use the identity:
Paper 3, Section II,
commentShow that
where is an integral from 0 to along the line and is an integral from 1 to along a steepest-descent contour which you should determine.
By employing in the integrals and the changes of variables and , respectively, compute the first two terms of the large asymptotic expansion of the integral above.
Paper 4, Section II, C
commentConsider the ordinary differential equation
where
and are constants. Look for solutions in the asymptotic form
and determine in terms of , as well as in terms of .
Deduce that the Bessel equation
where is a complex constant, has two solutions of the form
and determine and in terms of
Can the above asymptotic expansions be valid for all , or are they valid only in certain domains of the complex -plane? Justify your answer briefly.
Paper 1, Section I, D
comment(a) The action for a one-dimensional dynamical system with a generalized coordinate and Lagrangian is given by
State the principle of least action and derive the Euler-Lagrange equation.
(b) A planar spring-pendulum consists of a light rod of length and a bead of mass , which is able to slide along the rod without friction and is attached to the ends of the rod by two identical springs of force constant as shown in the figure. The rod is pivoted at one end and is free to swing in a vertical plane under the influence of gravity.
(i) Identify suitable generalized coordinates and write down the Lagrangian of the system.
(ii) Derive the equations of motion.
Paper 2, Section I, D
commentThe Lagrangian for a heavy symmetric top of mass , pinned at a point that is a distance from the centre of mass, is
(a) Find all conserved quantities. In particular, show that , the spin of the top, is constant.
(b) Show that obeys the equation of motion
where the explicit form of should be determined.
(c) Determine the condition for uniform precession with no nutation, that is and const. For what values of does such uniform precession occur?
Paper 2, Section II, C
comment(a) Consider a Lagrangian dynamical system with one degree of freedom. Write down the expression for the Hamiltonian of the system in terms of the generalized velocity , momentum , and the Lagrangian . By considering the differential of the Hamiltonian, or otherwise, derive Hamilton's equations.
Show that if is ignorable (cyclic) with respect to the Lagrangian, i.e. , then it is also ignorable with respect to the Hamiltonian.
(b) A particle of charge and mass moves in the presence of electric and magnetic fields such that the scalar and vector potentials are and , where are Cartesian coordinates and are constants. The Lagrangian of the particle is
Starting with the Lagrangian, derive an explicit expression for the Hamiltonian and use Hamilton's equations to determine the motion of the particle.
Paper 3, Section I,
comment(a) Consider a particle of mass that undergoes periodic motion in a one-dimensional potential . Write down the Hamiltonian for the system. Explain what is meant by the angle-action variables of the system and write down the integral expression for the action variable .
(b) For and fixed total energy , describe the shape of the trajectories in phase-space. By using the expression for the area enclosed by the trajectory, or otherwise, find the action variable in terms of and . Hence describe how changes with if varies slowly with time. Justify your answer.
Paper 4, Section I, D
commentA triatomic molecule is modelled by three masses moving in a line while connected to each other by two identical springs of force constant as shown in the figure.
(a) Write down the Lagrangian and derive the equations describing the motion of the atoms.
(b) Find the normal modes and their frequencies. What motion does the lowest frequency represent?
Paper 4, Section II, C
commentConsider a rigid body with angular velocity , angular momentum and position vector , in its body frame.
(a) Use the expression for the kinetic energy of the body,
to derive an expression for the tensor of inertia of the body, I. Write down the relationship between and .
(b) Euler's equations of torque-free motion of a rigid body are
Working in the frame of the principal axes of inertia, use Euler's equations to show that the energy and the squared angular momentum are conserved.
(c) Consider a cuboid with sides and , and with mass distributed uniformly.
(i) Use the expression for the tensor of inertia derived in (a) to calculate the principal moments of inertia of the body.
(ii) Assume and , and suppose that the initial conditions are such that
with the initial angular velocity perpendicular to the intermediate principal axis . Derive the first order differential equation for in terms of and and hence determine the long-term behaviour of .
Paper 1, Section I,
commentLet be a finite alphabet. Explain what is meant by saying that a binary code has minimum distance . If is such a binary code with minimum distance , show that is error-detecting and error-correcting.
Show that it is possible to construct a code that has minimum distance for any integer .
Paper 1, Section II, G
commentDefine the Hamming code. Show that it is a perfect, linear, 1-error correcting code.
I wish to send a message through a noisy channel to a friend. The message consists of a large number of letters from a 16 -letter alphabet . When my friend has decoded the message, she can tell whether there have been any errors. If there have, she asks me to send the message again and this is repeated until she has received the message without error. For each individual binary digit that is transmitted, there is independently a small probability of an error.
(a) Suppose that I encode my message by writing each letter as a 4-bit binary string. The whole message is then bits long. What is the probability that the entire message is transmitted without error? How many times should I expect to transmit the message until my friend receives it without error?
(b) As an alternative, I use the Hamming code to encode each letter of as a 7-bit binary string. What is the probability that my friend can decode a single 7-bit string correctly? Deduce that the probability that the entire message is correctly decoded is given approximately by
Which coding method is better?
Paper 2, Section I, G
commentA random variable takes values in the alphabet with probabilities and . Calculate the entropy of .
Define what it means for a code for a general finite alphabet to be optimal. Find such a code for the distribution above and show that there are optimal codes for this distribution with differing lengths of codeword.
[You may use any results from the course without proof. Note that .]
Paper 2, Section II, G
commentBriefly describe the public key cipher.
Just before it went into liquidation, the Internet Bank decided that it wanted to communicate with each of its customers using an RSA cipher. So, it chose a large modulus , which is the product of two large prime numbers, and chose encrypting exponents and decrypting exponents for each customer . The bank published and and sent the decrypting exponent secretly to customer . Show explicitly that the cipher can be broken by each customer.
The bank sent out the same message to each customer. I am not a customer of the bank but have two friends who are and I notice that their published encrypting exponents are coprime. Explain how I can find the original message. Can I break the cipher?
Paper 3, Section I, G
commentLet be a random variable that takes each value in the finite alphabet with probability . Show that, if each is an integer greater than 0 and , then there is a decodable binary code with each codeword having length .
Prove that, for any decodable code , we have
where is the entropy of the random variable . When is there equality in this inequality?
Paper 4, Section I, G
commentExplain how to construct binary Reed-Muller codes. State and prove a result giving the minimum distance for each such Reed-Muller code.
Paper 1, Section I, C
commentConsider three galaxies and with position vectors and in a homogeneous universe. Assuming they move with non-relativistic velocities and , show that spatial homogeneity implies that the velocity field satisfies
and hence that is linearly related to by
where the components of the matrix are independent of .
Suppose the matrix has the form
with constant. Describe the kinematics of the cosmological expansion.
Paper 1, Section II, C
commentA closed universe contains black-body radiation, has a positive cosmological constant , and is governed by the equation
where is the scale factor and is a positive constant. Using the substitution and the boundary condition , deduce the boundary condition for and show that
and hence that
Express the constant in terms of and .
Sketch the graphs of for the cases and .
Paper 2, Section I, C
commentThe mass density perturbation equation for non-relativistic matter with wave number in the late universe is
Suppose that a non-relativistic fluid with the equation of state dominates the universe when , and the curvature and the cosmological constant can be neglected. Show that the sound speed can be written in the form where is a constant.
Find power-law solutions to of the form and hence show that the general solution is
where
Interpret your solutions in the two regimes and where .
Paper 3, Section I, C
commentWhat is the flatness problem? Show by reference to the Friedmann equation how a period of accelerated expansion of the scale factor in the early stages of the universe can solve the flatness problem if , where is the mass density and is the pressure.
In the very early universe, where we can neglect the spatial curvature and the cosmological constant, there is a homogeneous scalar field with a vacuum potential energy
and the Friedmann energy equation (in units where ) is
where is the Hubble parameter. The field obeys the evolution equation
During inflation, evolves slowly after starting from a large initial value at . State what is meant by the slow-roll approximation. Show that in this approximation,
where is the initial value of .
As decreases from its initial value , what is its approximate value when the slow-roll approximation fails?
Paper 3, Section II, C
commentMassive particles and antiparticles each with mass and respective number densities and are present at time in the radiation era of an expanding universe with zero curvature and no cosmological constant. Assuming they interact with crosssection at speed , explain, by identifying the physical significance of each of the terms, why the evolution of is described by
where the expansion scale factor of the universe is , and where the meaning of should be briefly explained. Show that
Assuming initial particle-antiparticle symmetry, show that
where is the equilibrium number density at temperature .
Let and . Show that
where and is the Hubble expansion rate when .
When , the number density can be assumed to be depleted only by annihilations. If is constant, show that as at late time, approaches a constant value given by
Why do you expect weakly interacting particles to survive in greater numbers than strongly interacting particles?
Paper 4, Section I, C
commentCalculate the total effective number of relativistic spin states present in the early universe when the temperature is if there are three species of low-mass neutrinos and antineutrinos in addition to photons, electrons and positrons. If the weak interaction rate is and the expansion rate of the universe is , where is the total density of the universe, calculate the temperature at which the neutrons and protons cease to interact via weak interactions, and show that .
State the formula for the equilibrium ratio of neutrons to protons at , and briefly describe the sequence of events as the temperature falls from to the temperature at which the nucleosynthesis of helium and deuterium ends.
What is the effect of an increase or decrease of on the abundance of helium-4 resulting from nucleosynthesis? Why do changes in have a very small effect on the final abundance of deuterium?
Paper 1, Section II,
commentLet be a domain (connected open subset) with boundary a continuously differentiable simple closed curve. Denoting by the area of and the length of the curve , state and prove the isoperimetric inequality relating and with optimal constant, including the characterization for equality. [You may appeal to Wirtinger's inequality as long as you state it precisely.]
Does the result continue to hold if the boundary is allowed finitely many points at which it is not differentiable? Briefly justify your answer by giving either a counterexample or an indication of a proof.
Paper 2, Section II, G
commentIf denotes a domain in , what is meant by saying that a smooth map is an immersion? Define what it means for such an immersion to be isothermal. Explain what it means to say that an immersed surface is minimal.
Let be an isothermal immersion. Show that it is minimal if and only if are harmonic functions of . [You may use the formula for the mean curvature given in terms of the first and second fundamental forms, namely
Produce an example of an immersed minimal surface which is not an open subset of a catenoid, helicoid, or a plane. Prove that your example does give an immersed minimal surface in .
Paper 3 , Section II, G
commentShow that the surface of revolution in is homeomorphic to a cylinder and has everywhere negative Gaussian curvature. Show moreover the existence of a closed geodesic on .
Let be an arbitrary embedded surface which is homeomorphic to a cylinder and has everywhere negative Gaussian curvature. By using a suitable version of the Gauss-Bonnet theorem, show that contains at most one closed geodesic. [If required, appropriate forms of the Jordan curve theorem in the plane may also be used without proof.
Paper 4, Section II, G
commentLet denote the set of unitary complex matrices. Show that is a smooth (real) manifold, and find its dimension. [You may use any general results from the course provided they are stated correctly.] For any matrix in and an complex matrix, determine when represents a tangent vector to at .
Consider the tangent spaces to equipped with the metric induced from the standard (Euclidean) inner product on the real vector space of complex matrices, given by , where denotes the real part and denotes the conjugate transpose of . Suppose that represents a tangent vector to at the identity matrix . Sketch an explicit construction of a geodesic curve on passing through and with tangent direction , giving a brief proof that the acceleration of the curve is always orthogonal to the tangent space to .
[Hint: You will find it easier to work directly with complex matrices, rather than the corresponding real matrices.]
Paper 1, Section II, 28B
comment(a) What is a Lyapunov function?
Consider the dynamical system for given by
Prove that the origin is asymptotically stable (quoting carefully any standard results that you use).
Show that the domain of attraction of the origin includes the region where the maximum possible value of is to be determined.
Show also that there is a region such that implies that increases without bound. Explain your reasoning carefully. Find the smallest possible value of .
(b) Now consider the dynamical system
Prove that this system has a periodic solution (again, quoting carefully any standard results that you use).
Demonstrate that this periodic solution is unique.
Paper 2, Section II, B
comment(a) An autonomous dynamical system in has a periodic orbit with period . The linearized evolution of a small perturbation is given by . Obtain the differential equation and initial condition satisfied by the matrix .
Define the Floquet multipliers of the orbit. Explain why one of the multipliers is always unity and give a brief argument to show that the other is given by
(b) Use the energy-balance method for nearly Hamiltonian systems to find leading-order approximations to the two limit cycles of the equation
where .
Determine the stability of each limit cycle, giving reasoning where necessary.
[You may assume that and .]
Paper 3, Section II, B
commentConsider the dynamical system
where is to be regarded as a fixed real constant and as a real parameter.
Find the fixed points of the system and determine the stability of the system linearized about the fixed points. Hence identify the values of at given where bifurcations occur.
Describe informally the concepts of centre manifold theory and apply it to analyse the bifurcations that occur in the above system with . In particular, for each bifurcation derive an equation for the dynamics on the extended centre manifold and hence classify the bifurcation.
What can you say, without further detailed calculation, about the case ?
Paper 4, Section II, B
commentLet be a continuous one-dimensional map of an interval . Explain what is meant by the statements (i) that has a horseshoe and (ii) that is chaotic (according to Glendinning's definition).
Assume that has a 3-cycle with and, without loss of generality, . Prove that has a horseshoe. [You may assume the intermediate value theorem.]
Represent the effect of on the intervals and by means of a directed graph, explaining carefully how the graph is constructed. Explain what feature of the graph implies the existence of a 3-cycle.
The map has a 5-cycle with and , and . For which , is an -cycle of guaranteed to exist? Is guaranteed to be chaotic? Is guaranteed to have a horseshoe? Justify your answers. [You may use a suitable directed graph as part of your arguments.]
How do your answers to the above change if instead ?
Paper 1, Section II, A
commentBriefly explain how to interpret the components of the relativistic stress-energy tensor in terms of the density and flux of energy and momentum in some inertial frame.
(i) The stress-energy tensor of the electromagnetic field is
where is the field strength, is the Minkowski metric, and is the permeability of free space. Show that , where is the current 4-vector.
[ Maxwell's equations are and ]
(ii) A fluid consists of point particles of rest mass and charge . The fluid can be regarded as a continuum, with 4 -velocity depending on the position in spacetime. For each there is an inertial frame in which the fluid particles at are at rest. By considering components in , show that the fluid has a current 4-vector field
and a stress-energy tensor
where is the proper number density of particles (the number of particles per unit spatial volume in in a small region around ). Write down the Lorentz 4-force on a fluid particle at . By considering the resulting 4 -acceleration of the fluid, show that the total stress-energy tensor is conserved, i.e.
Paper 3, Section II, 34A
comment(i) Consider the action
where is a 4-vector potential, is the field strength tensor, is a conserved current, and is a constant. Derive the field equation
For the action describes standard electromagnetism. Show that in this case the theory is invariant under gauge transformations of the field , which you should define. Is the theory invariant under these same gauge transformations when ?
Show that when the field equation above implies
Under what circumstances does hold in the case ?
(ii) Now suppose that and obeying reduce to static 3 -vectors and in some inertial frame. Show that there is a solution
for a suitable Green's function with as . Determine for any . [Hint: You may find it helpful to consider first the case and then the case , using the result , where
If is zero outside some bounded region, comment on the effect of the value of on the behaviour of when is large. [No further detailed calculations are required.]
Paper 4, Section II, A
commentA point particle of charge has trajectory in Minkowski space, where is its proper time. The resulting electromagnetic field is given by the Liénard-Wiechert 4-potential
Write down the condition that determines the point on the trajectory of the particle for a given value of . Express this condition in terms of components, setting and , and define the retarded time .
Suppose that the 3 -velocity of the particle is small in size compared to , and suppose also that . Working to leading order in and to first order in , show that
Now assume that can be replaced by in the expressions for and above. Calculate the electric and magnetic fields to leading order in and hence show that the Poynting vector is (in this approximation)
If the charge is performing simple harmonic motion , where is a unit vector and , find the total energy radiated during one period of oscillation.
Paper 1, Section II, E
comment(i) In a Newtonian fluid, the deviatoric stress tensor is linearly related to the velocity gradient so that the total stress tensor is
Show that for an incompressible isotropic fluid with a symmetric stress tensor we necessarily have
where is a constant which we call the dynamic viscosity and is the symmetric part of .
(ii) Consider Stokes flow due to the translation of a rigid sphere of radius so that the sphere exerts a force on the fluid. At distances much larger than the radius of the sphere, the instantaneous velocity and pressure fields are
where is measured with respect to an origin located at the centre of the sphere, and .
Consider a sphere of radius instantaneously concentric with . By explicitly computing the tractions and integrating them, show that the force exerted by the fluid located in on is constant and independent of , and evaluate it.
(iii) Explain why the Stokes equations in the absence of body forces can be written
Show that by integrating this equation in the fluid volume located instantaneously between and , you can recover the result in (ii) directly.
Paper 2, Section II, E
commentConsider an infinite rigid cylinder of radius a parallel to a horizontal rigid stationary surface. Let be the direction along the surface perpendicular to the cylinder axis, the direction normal to the surface (the surface is at ) and the direction along the axis of the cylinder. The cylinder moves with constant velocity . The minimum separation between the cylinder and the surface is denoted by .
(i) What are the conditions for the flow in the thin gap between the cylinder and the surface to be described by the lubrication equations? State carefully the relevant length scale in the direction.
(ii) Without doing any calculation, explain carefully why, in the lubrication limit, the net fluid force acting on the stationary surface at has no component in the direction.
(iii) Using the lubrication approximation, calculate the component of the velocity field in the gap between the cylinder and the surface, and determine the pressure gradient as a function of the gap thickness .
(iv) Compute the tangential component of the force, , acting on the bottom surface per unit length in the direction.
[You may quote the following integrals:
Paper 3, Section II, E
commentConsider a three-dimensional high-Reynolds number jet without swirl induced by a force imposed at the origin in a fluid at rest. The velocity in the jet, described using cylindrical coordinates , is assumed to remain steady and axisymmetric, and described by a boundary layer analysis.
(i) Explain briefly why the flow in the jet can be described by the boundary layer equations
(ii) Show that the momentum flux in the jet, , where is an infinite surface perpendicular to , is not a function of . Combining this result with scalings from the boundary layer equations, derive the scalings for the unknown width and typical velocity of the jet as functions of and the other parameters of the problem .
(iii) Solving for the flow using a self-similar Stokes streamfunction
show that satisfies the differential equation
What boundary conditions should be applied to this equation? Give physical reasons for them.
[Hint: In cylindrical coordinates for axisymmetric incompressible flow you are given the incompressibility condition as
the -component of the Navier-Stokes equation as
and the relationship between the Stokes streamfunction, , and the velocity components as
Paper 4, Section II, E
commentA stationary inviscid fluid of thickness and density is located below a free surface at and above a deep layer of inviscid fluid of the same density in flowing with uniform velocity in the direction. The base velocity profile is thus
while the free surface at is maintained flat by gravity.
By considering small perturbations of the vortex sheet at of the form , calculate the dispersion relationship between and in the irrotational limit. By explicitly deriving that
deduce that the vortex sheet is unstable at all wavelengths. Show that the growth rates of the unstable modes are approximately when and when .
Paper 1, Section , B
commentEvaluate the real integral
where is taken to be the positive square root.
What is the value of
Paper 1, Section II, B
commentConsider the differential equation
where and are constants with and . Laplace's method for finding solutions involves writing
for some suitable contour and some suitable function . Determine for the equation and use a clearly labelled diagram to specify contours giving two independent solutions when is real in each of the cases and .
Now let and . Find explicit expressions for two independent solutions to . Find, in addition, a solution with .
Paper 2, Section I, B
commentGive a brief description of what is meant by analytic continuation.
The dilogarithm function is defined by
Let
where is a contour that runs from the origin to the point . Show that provides an analytic continuation of and describe its domain of definition in the complex plane, given a suitable branch cut.
Paper 2, Section II, B
commentThe Riemann zeta function is defined by the sum
which converges for . Show that
The analytic continuation of is given by the Hankel contour integral
Verify that this agrees with the integral above when Re and is not an integer. [You may assume .] What happens when ?
Evaluate . Show that is an odd function of and hence, or otherwise, show that for any positive integer .
Paper 3, Section , B
commentDefine what is meant by the Cauchy principal value in the particular case
where the constant is real and strictly positive. Evaluate this expression explicitly, stating clearly any standard results involving contour integrals that you use.
Paper 4, Section I, B
commentExplain how the Papperitz symbol
represents a differential equation with certain properties. [You need not write down the differential equation explicitly.]
The hypergeometric function is defined to be the solution of the equation given by the Papperitz symbol
that is analytic at and such that . Show that
indicating clearly any general results for manipulating Papperitz symbols that you use.
Paper 1, Section II,
comment(i) Let be a field extension and be irreducible of positive degree. Prove the theorem which states that there is a correspondence
(ii) Let be a field and . What is a splitting field for ? What does it mean to say is separable? Show that every is separable if is a finite field.
(iii) The primitive element theorem states that if is a finite separable field extension, then for some . Give the proof of this theorem assuming is infinite.
Paper 2, Section II, F
comment(i) State the fundamental theorem of Galois theory, without proof. Let be a splitting field of . Show that is Galois and that Gal has a subgroup which is not normal.
(ii) Let be the 8 th cyclotomic polynomial and denote its image in again by . Show that is not irreducible in .
(iii) Let and be coprime natural numbers, and let and where . Show that .
Paper 3, Section II, F
commentLet be of degree , with no repeated roots, and let be a splitting field for .
(i) Show that is irreducible if and only if for any there is such that .
(ii) Explain how to define an injective homomorphism . Find an example in which the image of is the subgroup of generated by (2 3). Find another example in which is an isomorphism onto .
(iii) Let and assume is irreducible. Find a chain of subgroups of that shows it is a solvable group. [You may quote without proof any theorems from the course, provided you state them clearly.]
Paper 4, Section II,
comment(i) Prove that a finite solvable extension of fields of characteristic zero is a radical extension.
(ii) Let be variables, , and where are the elementary symmetric polynomials in the variables . Is there an element such that but ? Justify your answer.
(iii) Find an example of a field extension of degree two such that for any . Give an example of a field which has no extension containing an primitive root of unity.
Paper 1, Section II, 35D
commentA vector field is said to be a conformal Killing vector field of the metric if
for some scalar field . It is a Killing vector field if .
(a) Show that is equivalent to
(b) Show that if is a conformal Killing vector field of the metric , then is a Killing vector field of the metric , where is any function that obeys
(c) Use part (b) to find an example of a metric with coordinates and (where for which are the contravariant components of a Killing vector field. [Hint: You may wish to start by considering what happens in Minkowski space.]
Paper 2, Section II, D
comment(a) The Schwarzschild metric is
(in units for which the speed of light ). Show that a timelike geodesic in the equatorial plane obeys
where
and and are constants.
(b) For a circular orbit of radius , show that
Given that the orbit is stable, show that .
(c) Alice lives on a small planet that is in a stable circular orbit of radius around a (non-rotating) black hole of radius . Bob lives on a spacecraft in deep space far from the black hole and at rest relative to it. Bob is ageing times faster than Alice. Find an expression for in terms of and and show that .
Paper 3, Section II, D
commentLet be the Levi-Civita connection and the Riemann tensor corresponding to a metric , and let be the Levi-Civita connection and the Riemann tensor corresponding to a metric . Let .
(a) Show that is a tensor.
(b) Using local inertial coordinates for the metric , or otherwise, show that
holds in all coordinate systems, where the semi-colon denotes covariant differentiation using the connection . [You may assume that .]
(c) In the case that for some vector field , show that if and only if
(d) Using the result that if and only if for some scalar field , show that the condition on in part (c) can be written as
for a certain covector field , which you should define.
Paper 4, Section II, D
commentIn static spherically symmetric coordinates, the metric for de Sitter space is given by
where and is a constant.
(a) Let for . Use the coordinates to show that the surface is non-singular. Is a space-time singularity?
(b) Show that the vector field is null.
(c) Show that the radial null geodesics must obey either
Which of these families of geodesics is outgoing
Sketch these geodesics in the plane for , where the -axis is horizontal and lines of constant are inclined at to the horizontal.
(d) Show, by giving an explicit example, that an observer moving on a timelike geodesic starting at can cross the surface within a finite proper time.
Paper 1, Section II, I
comment(a) What does it mean to say that a graph is strongly regular with parameters
(b) Let be an incomplete, strongly regular graph with parameters and of order . Suppose . Show that the numbers
are integers.
(c) Suppose now that is an incomplete, strongly regular graph with parameters . Show that .
Paper 2, Section II, I
comment(a) Define the Ramsey numbers and for integers . Show that exists for all and that if then .
(b) Show that, as , we have and .
(c) Show that, as , we have and .
[Hint: For the lower bound in (c), you may wish to begin by modifying a random graph to show that for all and we have
Paper 3, Section II, I
comment(a) Let be a graph. What is a Hamilton cycle in ? What does it mean to say that is Hamiltonian?
(b) Let be a graph of order satisfying . Show that is Hamiltonian. For each , exhibit a non-Hamiltonian graph of order with .
(c) Let be a bipartite graph with vertices in each class satisfying . Show that is Hamiltonian. For each , exhibit a non-Hamiltonian bipartite graph with vertices in each class and .
Paper 4, Section II, I
commentLet be a bipartite graph with vertex classes and . What does it mean to say that contains a matching from to ? State and prove Hall's Marriage Theorem.
Suppose now that every has , and that if and with then . Show that contains a matching from to .
Paper 1, Section II, D
commentLet be an evolution equation for the function . Assume and all its derivatives decay rapidly as . What does it mean to say that the evolution equation for can be written in Hamiltonian form?
The modified KdV (mKdV) equation for is
Show that small amplitude solutions to this equation are dispersive.
Demonstrate that the mKdV equation can be written in Hamiltonian form and define the associated Poisson bracket ,} on the space of functionals of u. Verify that the Poisson bracket is linear in each argument and anti-symmetric.
Show that a functional is a first integral of the mKdV equation if and only if , where is the Hamiltonian.
Show that if satisfies the mKdV equation then
Using this equation, show that the functional
Poisson-commutes with the Hamiltonian.
Paper 2, Section II, D
comment(a) Explain how a vector field
generates a 1-parameter group of transformations in terms of the solution to an appropriate differential equation. [You may assume the solution to the relevant equation exists and is unique.]
(b) Suppose now that . Define what is meant by a Lie-point symmetry of the ordinary differential equation
(c) Prove that every homogeneous, linear ordinary differential equation for admits a Lie-point symmetry generated by the vector field
By introducing new coordinates
which satisfy and , show that every differential equation of the form
can be reduced to a first-order differential equation for an appropriate function.
Paper 3, Section II, D
commentLet and be real matrices, with symmetric and antisymmetric. Suppose that
Show that all eigenvalues of the matrix are -independent. Deduce that the coefficients of the polynomial
are first integrals of the system.
What does it mean for a -dimensional Hamiltonian system to be integrable? Consider the Toda system with coordinates obeying
where here and throughout the subscripts are to be determined modulo 3 so that and . Show that
is a Hamiltonian for the Toda system.
Set and . Show that
Is this coordinate transformation canonical?
By considering the matrices
or otherwise, compute three independent first integrals of the Toda system. [Proof of independence is not required.]
Paper 1, Section II, G
comment(a) Let be an orthonormal basis of an inner product space . Show that for all there is a unique sequence of scalars such that .
Assume now that is a Hilbert space and that is another orthonormal basis of . Prove that there is a unique bounded linear map such that for all . Prove that this map is unitary.
(b) Let with . Show that no subspace of is isomorphic to . [Hint: Apply the generalized parallelogram law to suitable vectors.]
Paper 2, Section II, G
comment(a) Let be a linear map between normed spaces. What does it mean to say that is bounded? Show that is bounded if and only if is continuous. Define the operator norm of and show that the set of all bounded, linear maps from to is a normed space in the operator norm.
(b) For each of the following linear maps , determine if is bounded. When is bounded, compute its operator norm and establish whether is compact. Justify your answers. Here for and for .
(i) .
(ii) .
(iii) .
(iv) , where is a given element of . [Hint: Consider first the case that for every , and apply to a suitable function. In the general case apply to a suitable sequence of functions.]
Paper 3, Section II, G
commentState and prove the Baire Category Theorem. [Choose any version you like.]
An isometry from a metric space to another metric space is a function such that for all . Prove that there exists no isometry from the Euclidean plane to the Banach space of sequences converging to 0 . [Hint: Assume is an isometry. For and let denote the coordinate of . Consider the sets consisting of all pairs with and .]
Show that for each there is a linear isometry .
Paper 4, Section II, G
commentLet be a Hilbert space and . Define what is meant by an adjoint of and prove that it exists, it is linear and bounded, and that it is unique. [You may use the Riesz Representation Theorem without proof.]
What does it mean to say that is a normal operator? Give an example of a bounded linear map on that is not normal.
Show that is normal if and only if for all .
Prove that if is normal, then , that is, that every element of the spectrum of is an approximate eigenvalue of .
Paper 1, Section II, I
commentState and prove the Completeness Theorem for Propositional Logic.
[You do not need to give definitions of the various terms involved. You may assume the Deduction Theorem, provided that you state it precisely.]
State the Compactness Theorem and the Decidability Theorem, and deduce them from the Completeness Theorem.
Let consist of the propositions for . Does prove ? Justify your answer. [Here are primitive propositions.]
Paper 2, Section II, I
comment(a) Give the inductive and synthetic definitions of ordinal addition, and prove that they are equivalent. Give the inductive definitions of ordinal multiplication and ordinal exponentiation.
(b) Answer, with brief justification, the following:
(i) For ordinals and with , must we have ? Must we have ?
(ii) For ordinals and with , must we have ?
(iii) Is there an ordinal such that ?
(iv) Show that . Is the least ordinal such that ?
[You may use standard facts about ordinal arithmetic.]
Paper 3, Section II, I
comment(i) State and prove Zorn's Lemma. [You may assume Hartogs' Lemma.] Where in your proof have you made use of the Axiom of Choice?
(ii) Let be a partial ordering on a set . Prove carefully that may be extended to a total ordering of .
What does it mean to say that is well-founded?
If has an extension that is a well-ordering, must be well-founded? If is well-founded, must every total ordering extending it be a well-ordering? Justify your answers.
Paper 4, Section II, I
commentState the Axiom of Foundation and the Principle of -Induction, and show that they are equivalent (in the presence of the other axioms of ). [You may assume the existence of transitive closures.]
Explain briefly how the Principle of -Induction implies that every set is a member of some .
Find the ranks of the following sets:
(i) ,
(ii) the Cartesian product ,
(iii) the set of all functions from to .
[You may assume standard properties of rank.]
Paper 1, Section I, E
commentThe population density of individuals of age at time satisfies
where is the age-dependent death rate and is the birth rate per individual of age . Show that this may be solved with a similarity solution of the form if the growth rate satisfies where
Suppose now that the birth rate is given by with and is a positive integer, and the death rate is constant in age (i.e. . Find the average number of offspring per individual.
Find the similarity solution, and find the threshold for the birth parameter so that corresponds to a growing population.
Paper 2, Section I, E
commentAn activator-inhibitor system is described by the equations
where .
Find the range of for which the spatially homogeneous system has a stable equilibrium solution with and .
For the case when the homogeneous system is stable, consider spatial perturbations proportional to to the equilibrium solution found above. Show that the system has a Turing instability when
Paper 3, Section I, E
commentThe number of a certain type of annual plant in year is given by . Each plant produces seeds that year and then dies before the next year. The proportion of seeds that germinate to produce a new plant the next year is given by where . Explain briefly why the system can be described by
Give conditions on for a stable positive equilibrium of the plant population size to be possible.
Winters become milder and now a proportion of all plants survive each year . Assume that plants produce seeds as before while they are alive. Show that a wider range of now gives a stable positive equilibrium population.
Paper 3, Section II, E
commentA fungal disease is introduced into an isolated population of frogs. Without disease, the normalised population size would obey the logistic equation , where the dot denotes differentiation with respect to time. The disease causes death at rate and there is no recovery. The disease transmission rate is and, in addition, offspring of infected frogs are infected from birth.
(a) Briefly explain why the population sizes and of uninfected and infected frogs respectively now satisfy
(b) The population starts at the disease-free population size and a small number of infected frogs are introduced. Show that the disease will successfully invade if and only if .
(c) By finding all the equilibria in and considering their stability, find the long-term outcome for the frog population. State the relationships between and that distinguish different final populations.
(d) Plot the long-term steady total population size as a function of for fixed , and note that an intermediate mortality rate is actually the most harmful. Explain why this is the case.
Paper 4, Section I, E
comment(i) A variant of the classic logistic population model is given by the HutchinsonWright equation
where . Determine the condition on (in terms of ) for the constant solution to be stable.
(ii) Another variant of the logistic model is given by the equation
where . Give a brief interpretation of what this model represents.
Determine the condition on (in terms of ) for the constant solution to be stable in this model.
Paper 4, Section II, E
commentIn a stochastic model of multiple populations, is the probability that the population sizes are given by the vector at time . The jump rate is the probability per unit time that the population sizes jump from to . Under suitable assumptions, the system may be approximated by the multivariate Fokker-Planck equation (with summation convention)
where and matrix elements .
(a) Use the multivariate Fokker-Planck equation to show that
[You may assume that as .]
(b) For small fluctuations, you may assume that the vector may be approximated by a linear function in and the matrix may be treated as constant, i.e. and (where and are constants). Show that at steady state the covariances satisfy
(c) A lab-controlled insect population consists of larvae and adults. Larvae are added to the system at rate . Larvae each mature at rate per capita. Adults die at rate per capita. Give the vector and matrix for this model. Show that at steady state
(d) Find the variance of each population size near steady state, and show that the covariance between the populations is zero.
Paper 1, Section II,
comment(a) Let be a number field, and a monic polynomial whose coefficients are in . Let be a field containing and . Show that if , then is an algebraic integer.
Hence conclude that if is monic, with , then .
(b) Compute an integral basis for when the minimum polynomial of is .
Paper 2, Section II, H
comment(i) Let or . Show that remains prime in if and only if is irreducible .
(ii) Factorise , (3) in , when . Compute the class group of .
Paper 4, Section II, H
commentLet be a number field. State Dirichlet's unit theorem, defining all the terms you use, and what it implies for a quadratic field , where is a square-free integer.
Find a fundamental unit of .
Find all integral solutions of the equation .
Paper 1, Section I, H
commentDefine the Legendre symbol . State and prove Euler's criterion, assuming if you wish the existence of primitive roots .
By considering the prime factors of for an odd integer, prove that there are infinitely many primes with .
Paper 2, Section I, H
commentDefine the Euler totient function and the Möbius function . Suppose and are functions defined on the natural numbers satisfying . State and prove a formula for in terms of . Find a relationship between and .
Define the Riemann zeta function . Find a Dirichlet series for valid for .
Paper 3, Section I, H
commentWhat does it mean to say that a positive definite binary quadratic form is reduced? Find the three smallest positive integers properly represented by each of the forms and . Show that every odd integer represented by some positive definite binary quadratic form with discriminant is represented by at least one of the forms and .
Paper 3, Section II, H
commentLet be a real number with continued fraction expansion . Define the convergents (by means of recurrence relations) and show that for we have
Show that
and deduce that as .
By computing a suitable continued fraction expansion, find solutions in positive integers and to each of the equations and .
Paper 4, Section I, H
commentShow that if is prime then must be a power of 2 . Now assuming is a power of 2 , show that if is a prime factor of then .
Explain the method of Fermat factorization, and use it to factor .
Paper 4, Section II, H
commentState the Chinese Remainder Theorem.
Let be an odd positive integer. Define the Jacobi symbol . Which of the following statements are true, and which are false? Give a proof or counterexample as appropriate.
(i) If then the congruence is soluble.
(ii) If is not a square then .
(iii) If is composite then there exists an integer a coprime to with
(iv) If is composite then there exists an integer coprime to with
Paper 1, Section II, 38E
comment(a) The diffusion equation
with the initial condition in and zero boundary conditions at and , is solved by the finite-difference method
where , and .
Assuming that the function and the exact solution are sufficiently smooth, prove that the exact solution satisfies the numerical scheme with error for constant .
(b) For the problem in part (a), assume that there exist such that for all . State (without proof) the Gershgorin theorem and prove that the method is stable for .
Paper 2, Section II, E
comment(a) The boundary value problem on the unit square with zero boundary conditions and scalar constant is discretised using finite differences as
with . Show that for the resulting system , for a suitable matrix and vectors and , both the Jacobi and Gauss-Seidel methods converge. [You may cite and use known results on the discretised Laplace operator and on the convergence of iterative methods.]
Define the Jacobi method with relaxation parameter . Find the eigenvalues of the iteration matrix for the above problem and show that, in order to ensure convergence for all , the condition is necessary.
[Hint: The eigenvalues of the discretised Laplace operator in two dimensions are for integers .]
(b) Explain the components and steps in a multigrid method for solving the Poisson equation, discretised as . If we use the relaxed Jacobi method within the multigrid method, is it necessary to choose to get fast convergence? Explain why or why not.
Paper 3, Section II, E
comment(a) Given the finite-difference recurrence
that discretises a Cauchy problem, the amplification factor is defined by
Show how acts on the Fourier transform of . Hence prove that the method is stable if and only if for all .
(b) The two-dimensional diffusion equation
for some scalar constant is discretised with the forward Euler scheme
Using Fourier stability analysis, find the range of values for which the scheme is stable.
Paper 4, Section II, E
comment(a) Define the th Krylov space for and . Letting be the dimension of , prove the following results.
(i) There exists a positive integer such that for and for .
(ii) If , where are eigenvectors of for distinct eigenvalues and all are nonzero, then .
(b) Define the term residual in the conjugate gradient (CG) method for solving a system with symmetric positive definite . Explain (without proof) the connection to Krylov spaces and prove that for any right-hand side the CG method finds an exact solution after at most steps, where is the number of distinct eigenvalues of . [You may use without proof known properties of the iterates of the CG method.]
Define what is meant by preconditioning, and explain two ways in which preconditioning can speed up convergence. Can we choose the preconditioner so that the CG method requires only one step? If yes, is it a reasonable method for speeding up the computation?
Paper 2, Section II,
commentAs a function of policy and initial state , let
where and for all . Suppose that for a specific policy , and all ,
Prove that for all and .
A gambler plays games in which he may bet 1 or 2 pounds, but no more than his present wealth. Suppose he has pounds after games. If he bets pounds then , or , with probabilities and respectively. Gambling terminates at the first such that or . His final reward is . Let be the policy of always betting 1 pound. Given , show that .
Is optimal when ?
Paper 3, Section II, K
commentA burglar having wealth may retire, or go burgling another night, in either of towns 1 or 2 . If he burgles in town then with probability he will, independently of previous nights, be caught, imprisoned and lose all his wealth. If he is not caught then his wealth increases by 0 or , each with probability and independently of what happens on other nights. Values of and are the same every night. He wishes to maximize his expected wealth at the point he retires, is imprisoned, or nights have elapsed.
Using the dynamic programming equation
with appropriately defined, prove that there exists an optimal policy under which he burgles another night if and only if his wealth is less than .
Suppose and . Prove that he should never burgle in town 2 .
[Hint: Suppose , there are nights to go, and it has been shown that he ought not burgle in town 2 if less than nights remain. For the case , separately consider subcases and . An interchange argument may help.]
Paper 4, Section II,
commentConsider the scalar system evolving as
where is a white noise sequence with and . It is desired to choose controls to minimize . Show that for the minimal cost is .
Find a constant and a function which solve
Let be the class of those policies for which every obeys the constraint . Show that , for all . Find, and prove optimal, a policy which over all minimizes
Paper 1, Section II, E
comment(a) State the Cauchy-Kovalevskaya theorem, and explain for which values of it implies the existence of solutions to the Cauchy problem
where is real analytic. Using the method of characteristics, solve this problem for these values of , and comment on the behaviour of the characteristics as approaches any value where the non-characteristic condition fails.
(b) Consider the Cauchy problem
with initial data and which are -periodic in . Give an example of a sequence of smooth solutions which are also -periodic in whose corresponding initial data and are such that while for non-zero as
Comment on the significance of this in relation to the concept of well-posedness.
Paper 2, Section II, E
commentProve that if is absolutely integrable with , and for , then for every Schwartz function the convolution
uniformly in as .
Show that the function given by
for satisfies
for . Hence prove that the tempered distribution determined by the function is a fundamental solution of the operator
[You may use the fact that ]
Paper 3, Section II, E
comment(a) Show that if is a Schwartz function and is a tempered distribution which solves
for some constant , then there exists a number which depends only on , such that for any . Explain briefly why this inequality remains valid if is only assumed to be in .
Show that if is given then for any .
[Hint: The inequality holds for any positive and ]
Prove that if is a smooth bounded function which solves
for some constant vector and constant , then there exists a number such that and depends only on .
[You may use the fact that, for non-negative , the Sobolev space of functions
(b) Let be a smooth real-valued function, which is -periodic in and satisfies the equation
Give a complete proof that if for all then for all and .
Paper 4, Section II, E
comment(a) Show that the Cauchy problem for satisfying
with initial data , which is a smooth -periodic function of , defines a strongly continuous one parameter semi-group of contractions on the Sobolev space for any .
(b) Solve the Cauchy problem for the equation
with , where are smooth -periodic functions of , and show that the solution is smooth. Prove from first principles that the solution satisfies the property of finite propagation speed.
[In this question all functions are real-valued, and
are the Sobolev spaces of functions which are -periodic in , for
Paper 1, Section II, A
commentIf and are operators which each commute with their commutator , show that
By solving this differential equation for , deduce that
The annihilation and creation operators for a harmonic oscillator of mass and frequency are defined by
Write down an expression for the general normalised eigenstate of the oscillator Hamiltonian in terms of the ground state . What is the energy eigenvalue of the state
Suppose the oscillator is now subject to a small perturbation so that it is described by the modified Hamiltonian with . Show that
where is a constant, to be determined. Hence show that to the shift in the ground state energy as a result of the perturbation is
[Standard results of perturbation theory may be quoted without proof.]
Paper 2, Section II, A
commentExpress the spin operator for a particle of spin in terms of the Pauli matrices where
Show that for any unit vector and deduce that
The space of states for a particle of spin has basis states which are eigenstates of with eigenvalues and respectively. If the Hamiltonian for the particle is , find
as linear combinations of the basis states.
The space of states for a system of two spin particles is . Write down explicit expressions for the joint eigenstates of and , where is the sum of the spin operators for the particles.
Suppose that the two-particle system has Hamiltonian and that at time the system is in the state with eigenvalue . Calculate the probability that at time the system will be measured to be in the state with eigenvalue zero.
Paper 3, Section II, A
commentLet denote the normalised joint eigenstates of and , where is the angular momentum operator for a quantum system. State clearly the possible values of the quantum numbers and and write down the corresponding eigenvalues in units with .
Consider two quantum systems with angular momentum states and . The eigenstates corresponding to their combined angular momentum can be written as
where are Clebsch-Gordan coefficients for addition of angular momenta and . What are the possible values of and what is a necessary condition relating and in order that ?
Calculate the values of for and for all . Use the sign convention that when takes its maximum value.
A particle with spin and intrinsic parity is at rest. It decays into two particles and with spin and spin 0 , respectively. Both and have intrinsic parity . The relative orbital angular momentum quantum number for the two particle system is . What are the possible values of for the cases and ?
Suppose particle is prepared in the state before it decays. Calculate the probability for particle to be found in the state , given that .
What is the probability if instead ?
[Units with should be used throughout. You may also use without proof
Paper 4, Section II, A
commentThe Hamiltonian for a quantum system in the Schrödinger picture is , where is independent of time and the parameter is small. Define the interaction picture corresponding to this Hamiltonian and derive a time evolution equation for interaction picture states.
Suppose that and are eigenstates of with distinct eigenvalues and , respectively. Show that if the system is in state at time zero then the probability of measuring it to be in state at time is
Let be the Hamiltonian for an isotropic three-dimensional harmonic oscillator of mass and frequency , with being the ground state wavefunction (where ) and being wavefunctions for the states at the first excited energy level . The oscillator is in its ground state at when a perturbation
is applied, with , and is then measured after a very large time has elapsed. Show that to first order in perturbation theory the oscillator will be found in one particular state at the first excited energy level with probability
but that the probability that it will be found in either of the other excited states is zero (to this order).
You may use the fact that
Paper 1, Section II, J
commentConsider a normally distributed random vector modelled as where is the identity matrix, and where . Define the Stein estimator of .
Prove that dominates the estimator for the risk function induced by quadratic loss
Show however that the worst case risks coincide, that is, show that
[You may use Stein's lemma without proof, provided it is clearly stated.]
Paper 2, Section II, J
commentConsider a random variable arising from the binomial distribution , . Find the maximum likelihood estimator and the Fisher information for .
Now consider the following priors on :
(i) a uniform prior on ,
(ii) a prior with density proportional to ,
(iii) a prior.
Find the means and modes of the posterior distributions corresponding to the prior distributions (i)-(iii). Which of these posterior decision rules coincide with ? Which one is minimax for quadratic risk? Justify your answers.
[You may use the following properties of the distribution. Its density , is proportional to , its mean is equal to , and its mode is equal to
provided either or .
You may further use the fact that a unique Bayes rule of constant risk is a unique minimax rule for that risk.]
Paper 3, Section II, J
commentDefine what it means for an estimator of an unknown parameter to be consistent.
Let be a sequence of random real-valued continuous functions defined on such that, as converges to in probability for every , where is non-random. Suppose that for some and every we have
and that has exactly one zero for every . Show that as , and deduce from this that the maximum likelihood estimator (MLE) based on observations from a model is consistent.
Now consider independent observations of bivariate normal random vectors
where and is the identity matrix. Find the MLE of and show that the MLE of equals
Show that is not consistent for estimating . Explain briefly why the MLE fails in this model.
[You may use the Law of Large Numbers without proof.]
Paper 4, Section II,
commentGiven independent and identically distributed observations with finite mean and variance , explain the notion of a bootstrap sample , and discuss how you can use it to construct a confidence interval for .
Suppose you can operate a random number generator that can simulate independent uniform random variables on . How can you use such a random number generator to simulate a bootstrap sample?
Suppose that and are cumulative probability distribution functions defined on the real line, that as for every , and that is continuous on . Show that, as ,
State (without proof) the theorem about the consistency of the bootstrap of the mean, and use it to give an asymptotic justification of the confidence interval . That is, prove that as where is the joint distribution of
[You may use standard facts of stochastic convergence and the Central Limit Theorem without proof.]
Paper 1, Section II, J
comment(a) Define the following concepts: a -system, a -system and a -algebra.
(b) State the Dominated Convergence Theorem.
(c) Does the set function
furnish an example of a Borel measure?
(d) Suppose is a measurable function. Let be continuous with . Show that the limit
exists and lies in the interval
Paper 2, Section II, J
comment(a) Let be a measure space, and let . What does it mean to say that belongs to ?
(b) State Hölder's inequality.
(c) Consider the measure space of the unit interval endowed with Lebesgue measure. Suppose and let .
(i) Show that for all ,
(ii) For , define
Show that for fixed, the function satisfies
where
(iii) Prove that is a continuous function. [Hint: You may find it helpful to split the integral defining into several parts.]
Paper 3 , Section II, J
comment(a) Let be a measure space. What does it mean to say that is a measure-preserving transformation? What does it mean to say that a set is invariant under ? Show that the class of invariant sets forms a -algebra.
(b) Take to be with Lebesgue measure on its Borel -algebra. Show that the baker's map defined by
is measure-preserving.
(c) Describe in detail the construction of the canonical model for sequences of independent random variables having a given distribution .
Define the Bernoulli shift map and prove it is a measure-preserving ergodic transformation.
[You may use without proof other results concerning sequences of independent random variables proved in the course, provided you state these clearly.]
Paper 4, Section II, J
comment(a) State Fatou's lemma.
(b) Let be a random variable on and let be a sequence of random variables on . What does it mean to say that weakly?
State and prove the Central Limit Theorem for i.i.d. real-valued random variables. [You may use auxiliary theorems proved in the course provided these are clearly stated.]
(c) Let be a real-valued random variable with characteristic function . Let be a sequence of real numbers with and . Prove that if we have
then
Paper 1, Section II, F
comment(a) Let be a finite group and let be a representation of . Suppose that there are elements in such that the matrices and do not commute. Use Maschke's theorem to prove that is irreducible.
(b) Let be a positive integer. You are given that the dicyclic group
has order .
(i) Show that if is any th root of unity in , then there is a representation of over which sends
(ii) Find all the irreducible representations of .
(iii) Find the character table of .
[Hint: You may find it helpful to consider the cases odd and even separately.]
Paper 2, Section II,
commentLet be a finite group. Suppose that is a finite-dimensional complex representation of dimension . Let be arbitrary.
(i) Define the th symmetric power and the th exterior power and write down their respective dimensions.
Let and let be the eigenvalues of on . What are the eigenvalues of on and on ?
(ii) Let be an indeterminate. For any , define the characteristic polynomial of on by . What is the relationship between the coefficients of and the character of the exterior power?
Find a relation between the character of the symmetric power and the polynomial .
Paper 3, Section II, F
comment(a) State Mackey's theorem, defining carefully all the terms used in the statement.
(b) Let be a finite group and suppose that acts on the set .
If , we say that the action of on is -transitive if has at least elements and for every pair of -tuples and such that the are distinct elements of and the are distinct elements of , there exists with for every .
(i) Let have at least elements, where and let . Show that acts -transitively on if and only if acts transitively on and the stabiliser acts -transitively on .
(ii) Show that the permutation module can be decomposed as
where is the trivial module and is some -module.
(iii) Assume that , so that . Prove that is irreducible if and only if acts 2-transitively on . In that case show also that is not the trivial representation. [Hint: Pick any orbit of on ; it is isomorphic as a -set to for some subgroup . Consider the induced character
Paper 4, Section II, F
comment(a) Let be the circle group. Assuming any required facts about continuous functions from real analysis, show that every 1-dimensional continuous representation of is of the form
for some .
(b) Let , and let be a continuous representation of on a finitedimensional vector space .
(i) Define the character of , and show that .
(ii) Show that .
(iii) Let be the irreducible 4-dimensional representation of . Decompose into irreducible representations. Hence decompose the exterior square into irreducible representations.
Paper 1, Section II, F
commentLet be a non-constant holomorphic map between compact connected Riemann surfaces and let denote the set of branch points. Show that the map is a regular covering map.
Given and a closed curve in with initial and final point , explain how this defines a permutation of the (finite) set . Show that the group obtained from all such closed curves is a transitive subgroup of the full symmetric group of the fibre .
Find the group for where .
Paper 2, Section II, F
commentLet be a domain in . Define the germ of a function element at . Let be the set of all germs of function elements in . Define the topology on . Show it is a topology, and that it is Hausdorff. Define the complex structure on , and show that there is a natural projection map which is an analytic covering map on each connected component of .
Given a complete analytic function on , describe how it determines a connected component of . [You may assume that a function element is an analytic continuation of a function element along a path if and only if there is a lift of to starting at the germ of at and ending at the germ of at .]
In each of the following cases, give an example of a domain in and a complete analytic function such that:
(i) is regular but not bijective;
(ii) is surjective but not regular.
Paper 3, Section II, F
commentLet denote the Weierstrass -function with respect to a lattice and let be an even elliptic function with periods . Prove that there exists a rational function such that . If we write where and are coprime polynomials, find the degree of in terms of the degrees of the polynomials and . Describe all even elliptic functions of degree two. Justify your answers. [You may use standard properties of the Weierstrass -function.]
Paper 1, Section I, J
commentThe outputs of a particular process are positive and are believed to be related to -vectors of covariates according to the following model
In this model are i.i.d. random variables where is known. It is not possible to measure the output directly, but we can detect whether the output is greater than or less than or equal to a certain known value . If
show that a probit regression model can be used for the data .
How can we recover and from the parameters of the probit regression model?
Paper 1, Section II, J
commentAn experiment is conducted where scientists count the numbers of each of three different strains of fleas that are reproducing in a controlled environment. Varying concentrations of a particular toxin that impairs reproduction are administered to the fleas. The results of the experiment are stored in a data frame in , whose first few rows are given below.
The full dataset has 80 rows. The first column provides the number of fleas, the second provides the concentration of the toxin and the third specifies the strain of the flea as factors 0,1 or 2 . Strain 0 is the common flea and strains 1 and 2 have been genetically modified in a way thought to increase their ability to reproduce in the presence of the toxin.
Explain and interpret the commands and (abbreviated) output below. In particular, you should describe the model being fitted, briefly explain how the standard errors are calculated, and comment on the hypothesis tests being described in the summary.
Explain and motivate the following code in the light of the output above. Briefly explain the differences between the models fitted below, and the model corresponding to it
Denote by the three models being fitted in sequence above. Explain the hypothesis tests comparing the models to each other that can be performed using the output from the following code.
fit1$dev, fit2$dev, fit3$dev)
[1]
[1]
Use these numbers to comment on the most appropriate model for the data.
Paper 2, Section I, J
commentLet be independent Poisson random variables with means , where for some known constants and an unknown parameter . Find the log-likelihood for .
By first computing the first and second derivatives of the log-likelihood for , describe the algorithm you would use to find the maximum likelihood estimator . Hint: Recall that if then
for .]
Paper 3, Section I, J
commentData are available on the number of counts (atomic disintegration events that take place within a radiation source) recorded with a Geiger counter at a nuclear plant. The counts were registered at each second over a 30 second period for a short-lived, man-made radioactive compound. The first few rows of the dataset are displayed below.
Describe the model being fitted with the following command.
fit Counts Time, data=geiger)
Below is a plot against time of the residuals from the model fitted above.
Referring to the plot, suggest how the model could be improved, and write out the code for fitting this new model. Briefly describe how one could test in whether the new model is to be preferred over the old model.
Paper 4, Section I, J
commentData on 173 nesting female horseshoe crabs record for each crab its colour as one of 4 factors (simply labelled ), its width (in ) and the presence of male crabs nearby (a 1 indicating presence). The data are collected into the data frame crabs and the first few lines are displayed below.
Describe the model being fitted by the command below.
fit1 <- glm(males colour + width, family = binomial, data=crabs)
The following (abbreviated) output is obtained from the summary command.
Write out the calculation for an approximate confidence interval for the coefficient for width. Describe the calculation you would perform to obtain an estimate of the probability that a female crab of colour 3 and with a width of has males nearby. [You need not actually compute the end points of the confidence interval or the estimate of the probability above, but merely show the calculations that would need to be performed in order to arrive at them.]
Paper 4, Section II, J
commentConsider the normal linear model where the -vector of responses satisfies with . Here is an matrix of predictors with full column rank where and is an unknown vector of regression coefficients. For , denote the th column of by , and let be with its th column removed. Suppose where is an -vector of 1 's. Denote the maximum likelihood estimate of by . Write down the formula for involving , the orthogonal projection onto the column space of .
Consider with . By thinking about the orthogonal projection of onto , show that
[You may use standard facts about orthogonal projections including the fact that if and are subspaces of with a subspace of and and denote orthogonal projections onto and respectively, then for all .]
By considering the fitted values , explain why if, for any , a constant is added to each entry in the th column of , then will remain unchanged. Let . Why is (*) also true when all instances of and are replaced by and respectively?
The marks from mid-year statistics and mathematics tests and an end-of-year statistics exam are recorded for 100 secondary school students. The first few lines of the data are given below.
The following abbreviated output is obtained:
What are the hypothesis tests corresponding to the final column of the coefficients table? What is the hypothesis test corresponding to the final line of the output? Interpret the results when testing at the level.
How does the following sample correlation matrix for the data help to explain the relative sizes of some of the -values?
Paper 1, Section II, C
comment(a) Define the canonical partition function for a system with energy levels , where labels states, given that the system is in contact with a heat reservoir at temperature . What is the probability that the system occupies state ? Starting from an expression for the entropy , deduce that
(b) Consider an ensemble consisting of copies of the system in part (a) with very large, so that there are members of the ensemble in state . Starting from an expression for the number of ways in which this can occur, find the entropy of the ensemble and hence re-derive the expression . [You may assume Stirling's formula for large.
(c) Consider a system of non-interacting particles at temperature . Each particle has internal states with energies
Assuming that the internal states are the only relevant degrees of freedom, calculate the total entropy of the system. Find the limiting values of the entropy as and and comment briefly on your answers.
Paper 2, Section II, C
comment(a) State the Bose-Einstein distribution formula for the mean occupation numbers of discrete single-particle states with energies in a gas of bosons. Write down expressions for the total particle number and the total energy when the singleparticle states can be treated as continuous, with energies and density of states .
(b) Blackbody radiation at temperature is equivalent to a gas of photons with
where is the volume and is a constant. What value of the chemical potential is required when applying the Bose-Einstein distribution to photons? Show that the heat capacity at constant volume satisfies for some constant , to be determined.
(c) Consider a system of bosonic particles of fixed total number . The particles are trapped in a potential which has ground state energy zero and which gives rise to a density of states , where is a constant. Explain, for this system, what is meant by Bose-Einstein condensation and show that the critical temperature satisfies . If is the number of particles in the ground state, show that for just below
for some constant , to be determined.
(d) Would you expect photons to exhibit Bose-Einstein condensation? Explain your answer very briefly.
Paper 3, Section II, C
comment(a) A sample of gas has pressure , volume , temperature and entropy .
(i) Use the first law of thermodynamics to derive the Maxwell relation
(ii) Define the heat capacity at constant pressure and the enthalpy and show that .
(b) Consider a perfectly insulated pipe with a throttle valve, as shown.
Gas initially occupying volume on the left is forced slowly through the valve at constant pressure . A constant pressure is maintained on the right and the final volume occupied by the gas after passing through the valve is .
(i) Show that the enthalpy of the gas is unchanged by this process.
(ii) The Joule-Thomson coefficient is defined to be . Show that
[You may assume the identity ]
(iii) Suppose that the gas obeys an equation of state
where is the number of particles. Calculate to first order in and hence derive a condition on for obtaining a positive Joule-Thomson coefficient.
Paper 4, Section II, C
commentThe Ising model consists of particles, labelled by , arranged on a -dimensional Euclidean lattice with periodic boundary conditions. Each particle has spin up , or down , and the energy in the presence of a magnetic field is
where is a constant and indicates that the second sum is over each pair of nearest neighbours (every particle has nearest neighbours). Let , where is the temperature.
(i) Express the average spin per particle, , in terms of the canonical partition function .
(ii) Show that in the mean-field approximation
where is a single-particle partition function, is an effective magnetic field which you should find in terms of and , and is a prefactor which you should also evaluate.
(iii) Deduce an equation that determines for general values of and temperature . Without attempting to solve for explicitly, discuss how the behaviour of the system depends on temperature when , deriving an expression for the critical temperature and explaining its significance.
(iv) Comment briefly on whether the results obtained using the mean-field approximation for are consistent with an expression for the free energy of the form
where and are positive constants.
Paper 1, Section II,
comment(i) What does it mean to say that is a martingale?
(ii) If is an integrable random variable and , prove that is a martingale. [Standard facts about conditional expectation may be used without proof provided they are clearly stated.] When is it the case that the limit exists almost surely?
(iii) An urn contains initially one red ball and one blue ball. A ball is drawn at random and then returned to the urn with a new ball of the other colour. This process is repeated, adding one ball at each stage to the urn. If the number of red balls after draws and replacements is , and the number of blue balls is , show that is a martingale, where
Does this martingale converge almost surely?
Paper 2, Section II,
comment(i) What is Brownian motion?
(ii) Suppose that is Brownian motion, and the price at time of a risky asset is given by
where is the constant growth rate, and is the constant volatility of the asset. Assuming that the riskless rate of interest is , derive an expression for the price at time 0 of a European call option with strike and expiry , explaining briefly the basis for your calculation.
(iii) With the same notation, derive the time-0 price of a European option with expiry which at expiry pays
Paper 3, Section II,
commentA single-period market consists of assets whose prices at time are denoted by , and a riskless bank account bearing interest rate . The value of is given, and . An investor with utility wishes to choose a portfolio of the available assets so as to maximize the expected utility of her wealth at time 1. Find her optimal investment.
What is the market portfolio for this problem? What is the beta of asset ? Derive the Capital Asset Pricing Model, that
Excess return of asset Excess return of market portfolio .
The Sharpe ratio of a portfolio is defined to be the excess return of the portfolio divided by the standard deviation of the portfolio . If is the correlation of the return on asset with the return on the market portfolio, prove that
Sharpe ratio of asset Sharpe ratio of market portfolio .
Paper 4, Section II,
comment(i) An investor in a single-period market with time- 0 wealth may generate any time-1 wealth of the form , where is any element of a vector space of random variables. The investor's objective is to maximize , where is strictly increasing, concave and . Define the utility indifference price of a random variable .
Prove that the map is concave. [You may assume that any supremum is attained.]
(ii) Agent has utility . The agents may buy for time- 0 price a risky asset which will be worth at time 1 , where is random and has density
Assuming zero interest, prove that agent will optimally choose to buy
units of the risky asset at time 0 .
If the asset is in unit net supply, if , and if , prove that the market for the risky asset will clear at price
What happens if
Paper 1, Section I, I
commentLet be a non-empty bounded open subset of with closure and boundary . Let be continuous with twice differentiable on .
(i) Why does have a maximum on ?
(ii) If and on , show that has a maximum on .
(iii) If on , show that has a maximum on .
(iv) If on and on , show that on .
Paper 2, Section I, I
commentLet be the roots of the Legendre polynomial of degree . Let , be chosen so that
for all polynomials of degree or less. Assuming any results about Legendre polynomials that you need, prove the following results:
(i) for all polynomials of degree or less;
(ii) for all ;
(iii) .
Now consider . Show that
as for all continuous functions .
Paper 2, Section II,
commentState and prove Sperner's lemma concerning the colouring of triangles.
Deduce a theorem, to be stated clearly, on retractions to the boundary of a disc.
State Brouwer's fixed point theorem for a disc and sketch a proof of it.
Let be a continuous function such that for some we have for all . Show that is surjective.
Paper 3, Section I,
commentLet be a compact subset of with path-connected complement. If and , show that there is a polynomial such that
for all .
Paper 3, Section II, I
commentLet . By considering the set consisting of those for which there exists an with for all , or otherwise, give a Baire category proof of the existence of continuous functions on such that
at each .
Are the following statements true? Give reasons.
(i) There exists an such that
for each and each .
(ii) There exists an such that
for each and each .
Paper 4, Section I,
commentLet be the set of all non-empty compact subsets of -dimensional Euclidean space . Define the Hausdorff metric on , and prove that it is a metric.
Let be a sequence in . Show that is also in and that as in the Hausdorff metric.
Paper 1, Section II, 37B
commentAn acoustic plane wave (not necessarily harmonic) travels at speed in the direction , where , through an inviscid, compressible fluid of unperturbed density . Show that the velocity is proportional to the perturbation pressure , and find . Define the acoustic intensity .
A harmonic acoustic plane wave with wavevector and unitamplitude perturbation pressure is incident from on a thin elastic membrane at unperturbed position . The regions and are both occupied by gas with density and sound speed . The kinematic boundary conditions at the membrane are those appropriate for an inviscid fluid, and the (linearized) dynamic boundary condition
where and are the tension and mass per unit area of the membrane, and (with ) is its perturbed position. Find the amplitudes of the reflected and transmitted pressure perturbations, expressing your answers in terms of the dimensionless parameter
Hence show that the time-averaged energy flux in the -direction is conserved across the membrane.
Paper 2, Section II, 36B
commentA uniform elastic solid with density and Lamé moduli and occupies the region between rigid plane boundaries and . Starting with the linear elastic wave equation, show that SH waves can propagate in the -direction within this waveguide, and find the dispersion relation for the various modes.
State the cut-off frequency for each mode. Find the corresponding phase velocity and group velocity , and sketch these functions for .
Define the time and cross-sectional average appropriate for a mode with frequency energy. [You may assume that the elastic energy per unit volume is .]
An elastic displacement of the form is created in a region near , and then released at . Explain briefly how the amplitude of the resulting disturbance varies with time as at the moving position for each of the cases and . [You may quote without proof any generic results from the method of stationary phase.]
Paper 3, Section II, B
commentDerive the ray-tracing equations for the quantities and during wave propagation through a slowly varying medium with local dispersion relation , explaining the meaning of the notation .
The dispersion relation for water waves is , where is the water depth, , and and are the components of in the horizontal and directions. Water waves are incident from an ocean occupying onto a beach at . The undisturbed water depth is , where are positive constants and is sufficiently small that the depth can be assumed to be slowly varying. Far from the beach, the waves are planar with frequency and with crests making an acute angle with the shoreline.
Obtain a differential equation (with defined implicitly) for a ray and show that near the shore the ray satisfies
where and should be found. Sketch the shape of the wavecrests near the shoreline for the case .
Paper 4, Section II, 36B
commentThe shallow-water equations
describe one-dimensional flow over a horizontal boundary with depth and velocity , where is the acceleration due to gravity.
Show that the Riemann invariants are constant along characteristics satisfying , where is the linear wave speed and denotes a reference state.
An initially stationary pool of fluid of depth is held between a stationary wall at and a removable barrier at . At the barrier is instantaneously removed allowing the fluid to flow into the region .
For , find and in each of the regions
explaining your argument carefully with a sketch of the characteristics in the plane.
For , show that the solution in region (ii) above continues to hold in the region . Explain why this solution does not hold in