Part II, 2013, Paper 2
Part II, 2013, Paper 2
Jump to course
Paper 2, Section II, H
commentLet be an irreducible quadric surface.
(i) Show that if is singular, then every nonsingular point lies in exactly one line in , and that all the lines meet in the singular point, which is unique.
(ii) Show that if is nonsingular then each point of lies on exactly two lines of .
Let be nonsingular, a point of , and a plane not containing . Show that the projection from to is a birational map . At what points does fail to be regular? At what points does fail to be regular? Justify your answers.
Paper 2, Section II, G
comment(i) State the Seifert-van Kampen theorem.
(ii) Assuming any standard results about the fundamental group of a circle that you wish, calculate the fundamental group of the -sphere, for every .
(iii) Suppose that and that is a path-connected topological -manifold. Show that is isomorphic to for any .
Paper 2, Section II, D
comment(i) A particle of momentum and energy scatters off a sphericallysymmetric target in three dimensions. Define the corresponding scattering amplitude as a function of the scattering angle . Expand the scattering amplitude in partial waves of definite angular momentum , and determine the coefficients of this expansion in terms of the phase shifts appearing in the following asymptotic form of the wavefunction, valid at large distance from the target,
Here, is the distance from the target and are the Legendre polynomials.
[You may use without derivation the following approximate relation between plane and spherical waves (valid asymptotically for large ):
(ii) Suppose that the potential energy takes the form where is a dimensionless coupling. By expanding the wavefunction in a power series in , derive the Born Approximation to the scattering amplitude in the form
up to corrections of order , where . [You may quote any results you need for the Green's function for the differential operator provided they are stated clearly.]
(iii) Derive the corresponding order contribution to the phase shift of angular momentum .
[You may use the orthogonality relations
and the integral formula
where is a spherical Bessel function.]
Paper 2, Section II, J
comment(i) Define a Poisson process as a Markov chain on the non-negative integers and state three other characterisations.
(ii) Let be a continuous positive function. Let be a right-continuous process with independent increments, such that
where the terms are uniform in . Show that is a Poisson random variable with parameter .
(iii) Let be a sequence of independent and identically distributed positive random variables with continuous density function . We define the sequence of successive records, , by and, for ,
The record process,, is then defined by
Explain why the increments of are independent. Show that is a Poisson random variable with parameter where .
[You may assume the following without proof: For fixed , let (respectively, ) be the subsequence of obtained by retaining only those elements that are greater than (respectively, smaller than) . Then (respectively, ) is a sequence of independent variables each having the distribution of conditioned on (respectively, ); and and are independent.]
Paper 2, Section I, B
comment(i) Consider a rigid body with principal moments of inertia . Derive Euler's equations of torque-free motion,
with components of the angular velocity given in the body frame.
(ii) Use Euler's equations to show that the energy and the square of the total angular momentum of the body are conserved.
(iii) Consider a torque-free motion of a symmetric top with . Show that in the body frame the vector of angular velocity precesses about the body-fixed axis with constant angular frequency equal to .
Paper 2, Section II, B
comment(i) The action for a system with a generalized coordinate is given by
(a) State the Principle of Least Action and derive the Euler-Lagrange equation.
(b) Consider an arbitrary function . Show that leads to the same equation of motion.
(ii) A wire frame in a shape of an equilateral triangle with side rotates in a horizontal plane with constant angular frequency about a vertical axis through . A bead of mass is threaded on and moves without friction. The bead is connected to and by two identical light springs of force constant and equilibrium length .
(a) Introducing the displacement of the particle from the mid point of , determine the Lagrangian .
(b) Derive the equation of motion. Identify the integral of the motion.
(c) Describe the motion of the bead. Find the condition for there to be a stable equilibrium and find the frequency of small oscillations about it when it exists.
Paper 2, Section I, H
commentLet denote the maximum size of a binary code of length with minimum distance . For fixed with , let . Show that
where .
[You may assume the GSV and Hamming bounds and any form of Stirling's theorem provided you state them clearly.]
Paper 2, Section II, H
commentDefine a BCH code of length , where is odd, over the field of 2 elements with design distance . Show that the minimum weight of such a code is at least . [Results about the van der Monde determinant may be quoted without proof, provided they are stated clearly.]
Consider a BCH code of length 31 over the field of 2 elements with design distance 8 . Show that the minimum distance is at least 11. [Hint: Let be a primitive element in the field of elements, and consider the minimal polynomial for certain powers of
Paper 2, Section I, D
commentThe linearised equation for the growth of small inhomogeneous density perturbations with comoving wavevector in an isotropic and homogeneous universe is
where is the matter density, is the sound speed, is the pressure, is the expansion scale factor of the unperturbed universe, and overdots denote differentiation with respect to time .
Define the Jeans wavenumber and explain its physical meaning.
Assume the unperturbed Friedmann universe has zero curvature and cosmological constant and it contains only zero-pressure matter, so that . Show that the solution for the growth of density perturbations is given by
Comment briefly on the cosmological significance of this result.
Paper 2, Section II, H
commentLet be a regular curve parametrized by arc length having nowherevanishing curvature. State the Frenet relations between the tangent, normal and binormal vectors at a point, and their derivatives.
Let be a smooth oriented surface. Define the Gauss map , and show that its derivative at , is self-adjoint. Define the Gaussian curvature of at .
Now suppose that has image in and that its normal curvature is zero for all . Show that the Gaussian curvature of at a point of the curve is , where denotes the torsion of the curve.
If is a standard embedded torus, show that there is a curve on for which the normal curvature vanishes and the Gaussian curvature of is zero at all points of the curve.
Paper 2, Section I,
commentLet be a two-dimensional dynamical system with a fixed point at . Define a Lyapunov function and explain what it means for to be Lyapunov stable.
For the system
determine the values of for which is a Lyapunov function in a sufficiently small neighbourhood of the origin.
For the case , find and such that at implies that as and at implies that as
Paper 2, Section II, A
commentWrite down the boundary-layer equations for steady two-dimensional flow of a viscous incompressible fluid with velocity outside the boundary layer. Find the boundary layer thickness when , a constant. Show that the boundarylayer equations can be satisfied in this case by a streamfunction with suitable scaling function and similarity variable . Find the equation satisfied by and the associated boundary conditions.
Find the drag on a thin two-dimensional flat plate of finite length placed parallel to a uniform flow. Why does the drag not increase in proportion to the length of the plate? [You may assume that the boundary-layer solution is applicable except in negligibly small regions near the leading and trailing edges. You may also assume that .]
Paper 2, Section I, E
comment(i) Find all branch points of on an extended complex plane.
(ii) Use a branch cut to evaluate the integral
Paper 2, Section II, E
commentThe Beta function is defined for as
and by analytic continuation elsewhere in the complex -plane.
Show that:
(i) ;
(ii) .
By considering for all positive integers , deduce that for all with .
Paper 2, Section II, I
commentFor a positive integer , let be the cyclotomic field obtained by adjoining all -th roots of unity to . Let .
(i) Determine the Galois group of over .
(ii) Find all such that is contained in .
(iii) List all quadratic and quartic extensions of which are contained in , in the form or . Indicate which of these fields occurred in (ii).
[Standard facts on the Galois groups of cyclotomic fields and the fundamental theorem of Galois theory may be used freely without proof.]
Paper 2, Section II, D
commentA spacetime contains a one-parameter family of geodesics , where is a parameter along each geodesic, and labels the geodesics. The tangent to the geodesics is , and is a connecting vector. Prove that
and hence derive the equation of geodesic deviation:
[You may assume and the Ricci identity in the form
Consider the two-dimensional space consisting of the sphere of radius with line element
Show that one may choose , and that
Hence show that , using the geodesic deviation equation and the identity in any two-dimensional space
where is the Ricci scalar.
Verify your answer by direct computation of .
[You may assume that the only non-zero connection components are
and
You may also use the definition
Paper 2, Section I, G
commentLet be two straight lines in Euclidean 3-space. Show that there is a rotation about some axis through an angle that maps onto . Is this rotation unique?
Paper 2, Section II, F
commentLet be a graph with . State and prove a necessary and sufficient condition for to be Eulerian (that is, for to have an Eulerian circuit).
Prove that if then is Hamiltonian (that is, has a Hamiltonian circuit).
The line graph of has vertex set and edge set
Show that is Eulerian if is regular and connected.
Must be Hamiltonian if is Eulerian? Must be Eulerian if is Hamiltonian? Justify your answers.
Paper 2, Section II, 32C
commentConsider the Hamiltonian system
where .
When is the transformation canonical?
Prove that, if the transformation is canonical, then the equations in the new variables are also Hamiltonian, with the same Hamiltonian function .
Let , where is a symmetric nonsingular matrix. Determine necessary and sufficient conditions on for the transformation to be canonical.
Paper 2, Section II, F
commentLet be a Banach space. Let be a bounded linear operator. Show that there is a bounded sequence in such that for all .
Fix . Define the Banach space and briefly explain why it is separable. Show that for there exists such that and . [You may use Hölder's inequality without proof.]
Deduce that embeds isometrically into .
Paper 2, Section II, G
commentExplain what is meant by a chain-complete poset. State the Bourbaki-Witt fixedpoint theorem for such posets.
A poset is called directed if every finite subset of (including the empty subset) has an upper bound in is called directed-complete if every subset of which is directed (in the induced ordering) has a least upper bound in . Show that the set of all chains in an arbitrary poset , ordered by inclusion, is directed-complete.
Given a poset , let denote the set of all order-preserving maps , ordered pointwise (i.e. if and only if for all ). Show that is directed-complete if is.
Now suppose is directed-complete, and that is order-preserving and inflationary. Show that there is a unique smallest set satisfying
(a) ;
(b) is closed under composition (i.e. ); and
(c) is closed under joins of directed subsets.
Show that
(i) all maps in are inflationary;
(ii) is directed;
(iii) if , then all values of are fixed points of ;
(iv) for every , there exists with .
Paper 2, Section I, A
commentThe population density of individuals of age at time satisfies
with
where is the age-dependent death rate and is the birth rate per individual of age
Seek a similarity solution of the form and show that
Show also that if
then there is such a similarity solution. Give a biological interpretation of .
Suppose now that all births happen at age , at which time an individual produces offspring, and that the death rate is constant with age (i.e. . Find the similarity solution and give the condition for this to represent a growing population.
Paper 2, Section II, A
commentThe concentration of insects at position at time satisfies the nonlinear diffusion equation
with . Find the value of which allows a similarity solution of the form , with .
Show that
where is a constant. From the original partial differential equation, show that the total number of insects does not change in time. From this result, find a general expression relating and . Find a closed-form solution for in the case .
Paper 2, Section II, H
comment(i) State Dirichlet's unit theorem.
(ii) Let be a number field. Show that if every conjugate of has absolute value at most 1 then is either zero or a root of unity.
(iii) Let and where . Compute . Show that
Hence or otherwise find fundamental units for and .
[You may assume that the only roots of unity in are powers of ]
Paper 2, Section I, I
commentDefine Euler's totient function , and show that . Hence or otherwise prove that for any prime the multiplicative group is cyclic.
Paper 2, Section II, C
commentConsider the advection equation on the unit interval and , where , subject to the initial condition and the boundary condition , where is a given smooth function on .
(i) We commence by discretising the advection equation above with finite differences on the equidistant space-time grid with and . We obtain an equation for that reads
with the condition for all and .
What is the order of approximation (that is, the order of the local error) in space and time of the above discrete solution to the exact solution of the advection equation? Write the scheme in matrix form and deduce for which choices of this approximation converges to the exact solution. State (without proof) any theorems you use. [You may use the fact that for a tridiagonal matrix
the eigenvalues are given by .]
(ii) How does the order change when we replace the central difference approximation of the first derivative in space by forward differences, that is instead of For which choices of is this new scheme convergent?
(iii) Instead of the approximation in (i) we consider the following method for numerically solving the advection equation,
where we additionally assume that is given. What is the order of this method for a fixed ?
Paper 2, Section II, K
commentSuppose is a Markov chain. Consider the dynamic programming equation
with , and . Prove that:
(i) is nondecreasing in ;
(ii) , where is the value function of an infinite-horizon problem that you should describe;
(iii) .
A coin lands heads with probability . A statistician wishes to choose between: and , one of which is true. Prior probabilities of and in the ratio change after one toss of the coin to ratio (if the toss was a head) or to ratio (if the toss was a tail). What problem is being addressed by the following dynamic programming equation?
Prove that is a convex function of .
By sketching a graph of , describe the form of the optimal policy.
Paper 2, Section II, C
commentState the Lax-Milgram lemma.
Let be a smooth vector field which is -periodic in each coordinate for . Write down the definition of a weak solution for the equation
to be solved for given in , with both and also -periodic in each co-ordinate. [In this question use the definition
for the Sobolev spaces of functions -periodic in each coordinate and for
If the vector field is divergence-free, prove that there exists a unique weak solution for all such .
Supposing that is the constant vector field with components , write down the solution of in terms of Fourier series and show that there exists such that
Paper 2, Section II, 33E
comment(i) In units where , angular momentum states obey
Use the algebra of angular momentum to derive the following in terms of and : (a) ; (b) ; (c) .
(ii) Find in terms of and . Thus calculate the quantum numbers of the state in terms of and . Derive the normalisation of the state . Therefore, show that
finding in terms of .
(iii) Consider the combination of a spinless particle with an electron of spin and orbital angular momentum 1. Calculate the probability that the electron has a spin of in the -direction if the combined system has an angular momentum of in the -direction and a total angular momentum of . Repeat the calculation for a total angular momentum of .
Paper 2, Section II, K
commentDescribe the Weak Sufficiency Principle (WSP) and the Strong Sufficiency Principle (SSP). Show that Bayesian inference with a fixed prior distribution respects WSP.
A parameter has a prior distribution which is normal with mean 0 and precision (inverse variance) Given , further parameters have independent normal distributions with mean and precision . Finally, given both and , observables are independent, being normal with mean , and precision . The precision parameters are all fixed and known. Let , where . Show, directly from the definition of sufficiency, that is sufficient for . [You may assume without proof that, if have independent normal distributions with the same variance, and , then the vector is independent of .]
For data-values , determine the joint distribution, say, of , given and What is the distribution of , given and
Using these results, describe clearly how Gibbs sampling combined with RaoBlackwellisation could be applied to estimate the posterior joint distribution of , given .
Paper 2, Section II,
commentLet be a sequence of non-negative measurable functions defined on a measure space . Show that is also a non-negative measurable function.
State the Monotone Convergence Theorem.
State and prove Fatou's Lemma.
Let be as above. Suppose that as for all . Show that
Deduce that, if is integrable and , then converges to in . [Still assume that and are as above.]
Paper 2, Section II, G
commentRecall that a regular icosahedron has 20 faces, 30 edges and 12 vertices. Let be the group of rotational symmetries of a regular icosahedron.
Compute the conjugacy classes of . Hence, or otherwise, construct the character table of . Using the character table explain why must be a simple group.
[You may use any general theorems provided that you state them clearly.]
Paper 2, Section II, I
comment(i) Show that the open unit is biholomorphic to the upper half-plane .
(ii) Define the degree of a non-constant holomorphic map between compact connected Riemann surfaces. State the Riemann-Hurwitz formula without proof. Now let be a complex torus and a holomorphic map of degree 2 , where is the Riemann sphere. Show that has exactly four branch points.
(iii) List without proof those Riemann surfaces whose universal cover is the Riemann sphere or . Now let be a holomorphic map such that there are two distinct elements outside the image of . Assuming the uniformization theorem and the monodromy theorem, show that is constant.
Paper 2, Section I, J
commentConsider a linear model , where and are with , is , and is of full . Let and be sub-vectors of . What is meant by orthogonality between and ?
Now suppose
where are independent random variables, are real-valued known explanatory variables, and is a cubic polynomial chosen so that is orthogonal to and is orthogonal to .
Let . Describe the matrix such that . Show that is block diagonal. Assuming further that this matrix is non-singular, show that the least-squares estimators of and are, respectively,
Paper 2, Section II, 35A
comment(i) The first law of thermodynamics is , where is the chemical potential. Briefly describe its meaning.
(ii) What is equipartition of energy? Under which conditions is it valid? Write down the heat capacity at constant volume for a monatomic ideal gas.
(iii) Starting from the first law of thermodynamics, and using the fact that for an ideal gas , show that the entropy of an ideal gas containing particles can be written as
where and are temperature and volume of the gas, is the Boltzmann constant, and we define the heat capacity per particle as .
(iv) The Gibbs free energy is defined as . Verify that it is a function of temperature , pressure and particle number . Explain why depends on the particle number through .
(v) Calculate the chemical potential for an ideal gas with heat capacity per particle . Calculate for the special case of a monatomic gas.
Paper 2, Section II, J
commentWhat does it mean to say that is a supermartingale?
State and prove Doob's Upcrossing Inequality for a supermartingale.
Let be a martingale indexed by negative time, that is, for each , and . Using Doob's Upcrossing Inequality, prove that the limit exists almost surely.
Paper 2, Section I, F
comment(i) Show that for every there is a polynomial such that for all satisfying .
[You may assume standard results provided they are stated clearly.]
(ii) Show that there is no polynomial such that for all satisfying .
Paper 2, Section II, F
comment(i) Let be an integer. Show that
(ii) Let us say that an irrational number is badly approximable if there is some constant such that
for all and for all integers . Show that if the integers in the continued fraction expansion are bounded then is badly approximable.
Give, with proof, an example of an irrational number which is not badly approximable.
[Standard facts about continued fractions may be used without proof provided they are stated clearly.]
Paper 2, Section II, C
commentShow that the equations governing linear elasticity have plane-wave solutions, distinguishing between and waves.
A semi-infinite elastic medium in (where is the vertical coordinate) with density and Lamé moduli and is overlaid by a layer of thickness in of a second elastic medium with density and Lamé moduli and . The top surface at is free, that is, the surface tractions vanish there. The speed of the S-waves is lower in the layer, that is, . For a time-harmonic SH-wave with horizontal wavenumber and frequency , which oscillates in the slow top layer and decays exponentially into the fast semi-infinite medium, derive the dispersion relation for the apparent horizontal wave speed :
Show graphically that for a given value of there is always at least one real value of which satisfies equation . Show further that there are one or more higher modes if