Part II, 2013, Paper 1
Part II, 2013, Paper 1
Jump to course
Paper 1, Section II, H
commentLet be an affine variety over an algebraically closed field . What does it mean to say that is irreducible? Show that any non-empty affine variety is the union of a finite number of irreducible affine varieties .
Define the ideal of . Show that is a prime ideal if and only if is irreducible.
Assume that the base field has characteristic zero. Determine the irreducible components of
Paper 1, Section II, 21G
comment(i) Define the notion of the fundamental group of a path-connected space with base point .
(ii) Prove that if a group acts freely and properly discontinuously on a simply connected space , then is isomorphic to . [You may assume the homotopy lifting property, provided that you state it clearly.]
(iii) Suppose that are distinct points on the 2 -sphere and that . Exhibit a simply connected space with an action of a group as in (ii) such that , and calculate .
Paper 1, Section II, D
commentConsider a quantum system with Hamiltonian and energy levels
For any state define the Rayleigh-Ritz quotient and show the following:
(i) the ground state energy is the minimum value of ;
(ii) all energy eigenstates are stationary points of with respect to variations of .
Under what conditions can the value of for a trial wavefunction (depending on some parameter ) be used as an estimate of the energy of the first excited state? Explain your answer.
For a suitably chosen trial wavefunction which is the product of a polynomial and a Gaussian, use the Rayleigh-Ritz quotient to estimate for a particle of mass moving in a potential , where is a constant.
[You may use the integral formulae,
where is a non-negative integer and is a constant. ]
Paper 1, Section II, J
commentLet be a Markov chain on with -matrix given by
where .
(i) Show that is transient if and only if . [You may assume without proof that for all and all sufficiently small positive .]
(ii) Assume that . Find a necessary and sufficient condition for to be almost surely explosive. [You may assume without proof standard results about pure birth processes, provided that they are stated clearly.]
(iii) Find a stationary measure for . For the case and , show that is positive recurrent if and only if .
Paper 1, Section II, B
commentSuppose . Define what it means to say that
is an asymptotic expansion of as . Show that has no other asymptotic expansion in inverse powers of as .
To estimate the value of for large , one may use an optimal truncation of the asymptotic expansion. Explain what is meant by this, and show that the error is an exponentially small quantity in .
Derive an integral respresentation for a function with the above asymptotic expansion.
Paper 1, Section I, B
commentConsider an -dimensional dynamical system with generalized coordinates and momenta .
(a) Define the Poisson bracket of two functions and .
(b) Assuming Hamilton's equations of motion, prove that if a function Poisson commutes with the Hamiltonian, that is , then is a constant of the motion.
(c) Assume that is an ignorable coordinate, that is the Hamiltonian does not depend on it explicitly. Using the formalism of Poisson brackets prove that the conjugate momentum is conserved.
Paper 1, Section I, H
commentA binary Huffman code is used for encoding symbols occurring with respective probabilities where . Let be the length of a shortest codeword and the length of a longest codeword. Determine the maximal and minimal values of each of and , and find binary trees for which they are attained.
Paper 1, Section II, H
commentDefine the bar product of binary linear codes and , where is a subcode of . Relate the rank and minimum distance of to those of and and justify your answer. Show that if denotes the dual code of , then
Using the bar product construction, or otherwise, define the Reed-Muller code for . Show that if , then the dual of is again a Reed-Muller code.
Paper 1, Section I, D
commentThe Friedmann equation and the fluid conservation equation for a closed isotropic and homogeneous cosmology are given by
where the speed of light is set equal to unity, is the gravitational constant, is the expansion scale factor, is the fluid mass density and is the fluid pressure, and overdots denote differentiation with respect to the time coordinate .
If the universe contains only blackbody radiation and defines the zero of time , show that
where is a constant. What is the physical significance of the time ? What is the value of the ratio at the time when the scale factor is largest? Sketch the curve of and identify its geometric shape.
Briefly comment on whether this cosmological model is a good description of the observed universe at any time in its history.
Paper 1, Section II, D
commentA spherically symmetric star of total mass has pressure and mass density , where is the radial distance from its centre. These quantities are related by the equations of hydrostatic equilibrium and mass conservation:
where is the mass inside radius .
By integrating from the centre of the star at , where , to the surface of the star at , where , show that
where is the total gravitational potential energy. Show that
If the surface pressure is negligible and the star is a perfect gas of particles of mass with number density and at temperature , and radiation pressure can be ignored, then show that
where is the mean temperature of the star, which you should define.
Hence, show that the mean temperature of the star satisfies the inequality
Paper 1, Section II, H
commentFor a smooth map of manifolds, define the concepts of critical point, critical value and regular value.
With the obvious identification of with , and hence also of with , show that the complex-valued polynomial determines a smooth map whose only critical point is at the origin. Hence deduce that is a 4-dimensional manifold, and find the equations of its tangent space at any given point .
Now let be the unit 5 -sphere, defined by . Given a point , by considering the vector or otherwise, show that not all tangent vectors to at are tangent to . Deduce that is a compact three-dimensional manifold.
[Standard results may be quoted without proof if stated carefully.]
Paper 1, Section I, C
commentConsider the dynamical system in which has a hyperbolic fixed point at the origin.
Define the stable and unstable invariant subspaces of the system linearised about the origin. Give a constraint on the dimensions of these two subspaces.
Define the local stable and unstable manifolds of the origin for the system. How are these related to the invariant subspaces of the linearised system?
For the system
calculate the stable and unstable manifolds of the origin, each correct up to and including cubic order.
Paper 1, Section II, 36B
comment(i) Starting from
and performing a Lorentz transformation with , using
show how and transform under a Lorentz transformation.
(ii) By taking the limit , obtain the behaviour of and under a Galilei transfomation and verify the invariance under Galilei transformations of the nonrelativistic equation
(iii) Show that Maxwell's equations admit solutions of the form
where is an arbitrary function, is a unit vector, and the constant vectors and are subject to restrictions which should be stated.
(iv) Perform a Galilei transformation of a solution , with . Show that, by a particular choice of , the solution may brought to the form
where is an arbitrary function and is a spatial coordinate in the rest frame. By showing that is not a solution of Maxwell's equations in the boosted frame, conclude that Maxwell's equations are not invariant under Galilei transformations.
Paper 1, Section II, A
commentThe velocity field and stress tensor satisfy the Stokes equations in a volume bounded by a surface . Let be another solenoidal velocity field. Show that
where and are the strain-rates corresponding to the velocity fields and respectively, and is the unit normal vector out of . Hence, or otherwise, prove the minimum dissipation theorem for Stokes flow.
A particle moves at velocity through a highly viscous fluid of viscosity contained in a stationary vessel. As the particle moves, the fluid exerts a drag force on it. Show that
Consider now the case when the particle is a small cube, with sides of length , moving in a very large vessel. You may assume that
for some constant . Use the minimum dissipation theorem, being careful to declare the domain(s) involved, to show that
[You may assume Stokes' result for the drag on a sphere of radius .]
Paper 1, Section I, E
commentProve that there are no second order linear ordinary homogeneous differential equations for which all points in the extended complex plane are analytic.
Find all such equations which have one regular singular point at .
Paper 1, Section II, E
commentShow that the equation
has solutions of the form , where
and the contour is any closed curve in the complex plane, where and are real constants which should be determined.
Use this to find the general solution, evaluating the integrals explicitly.
Paper 1, Section II, I
comment(i) Give an example of a field , contained in , such that is a product of two irreducible quadratic polynomials in . Justify your answer.
(ii) Let be any extension of degree 3 over . Prove that the polynomial is irreducible over .
(iii) Give an example of a prime number such that is a product of two irreducible quadratic polynomials in . Justify your answer.
[Standard facts on fields, extensions, and finite fields may be quoted without proof, as long as they are stated clearly.]
Paper 1, Section II, 37D
commentThe curve , is a geodesic with affine parameter . Write down the geodesic equation satisfied by .
Suppose the parameter is changed to , where . Obtain the corresponding equation and find the condition for to be affine. Deduce that, whatever parametrization is used along the curve , the tangent vector to satisfies
Now consider a spacetime with metric , and conformal transformation
The curve is a geodesic of the metric connection of . What further restriction has to be placed on so that it is also a geodesic of the metric connection of ? Justify your answer.
Paper 1, Section I, G
commentShow that any pair of lines in hyperbolic 3-space that does not have a common endpoint must have a common normal. Is this still true when the pair of lines does have a common endpoint?
Paper 1, Section II, G
commentDefine the modular group acting on the upper half-plane.
Describe the set of points in the upper half-plane that have for each . Hence find a fundamental set for acting on the upper half-plane.
Let and be the two Möbius transformations
When is
For any point in the upper half-plane, show that either or else there is an integer with
Deduce that the modular group is generated by and .
Paper 1, Section II, F
commentState and prove Hall's theorem about matchings in bipartite graphs.
Show that a regular bipartite graph has a matching meeting every vertex.
A graph is almost r-regular if each vertex has degree or . Show that, if , an almost -regular graph must contain an almost -regular graph with .
[Hint: First, if possible, remove edges from whilst keeping it almost r-regular.]
Paper 1, Section II, C
commentQuoting carefully all necessary results, use the theory of inverse scattering to derive the 1-soliton solution of the equation
Paper 1, Section II, F
commentState and prove the Closed Graph Theorem. [You may assume any version of the Baire Category Theorem provided it is clearly stated. If you use any other result from the course, then you must prove it.]
Let be a closed subspace of such that is also a subset of . Show that the left-shift , given by , is bounded when is equipped with the sup-norm.
Paper 1, Section II, G
commentWrite down the recursive definitions of ordinal addition, multiplication and exponentiation.
Given that is a strictly increasing function-class (i.e. implies , show that for all .
Show that every ordinal has a unique representation in the form
where , and .
Under what conditions can an ordinal be represented in the form
where and Justify your answer.
[The laws of ordinal arithmetic (associative, distributive, etc.) may be assumed without proof.]
Paper 1, Section I, A
commentIn a discrete-time model, a proportion of mature bacteria divides at each time step. When a mature bacterium divides it is destroyed and two new immature bacteria are produced. A proportion of the immature bacteria matures at each time step, and a proportion of mature bacteria dies at each time step. Show that this model may be represented by the equations
Give an expression for the general solution to these equations and show that the population may grow if .
At time , the population is treated with an antibiotic that completely stops bacteria from maturing, but otherwise has no direct effects. Explain what will happen to the population of bacteria afterwards, and give expressions for and for in terms of and .
Paper 1, Section II, H
commentLet be a monic irreducible polynomial of degree . Let , where is a root of .
(i) Show that if is square-free then .
(ii) In the case find the minimal polynomial of and hence compute the discriminant of . What is the index of in ?
[Recall that the discriminant of is .]
Paper 1, Section I, I
commentState and prove Gauss's Lemma for the Legendre symbol . For which odd primes is 2 a quadratic residue modulo Justify your answer.
Paper 1, Section II, 40C
commentLet
(i) For which values of is positive definite?
(ii) Formulate the Gauss-Seidel method for the solution of a system
with as defined above and . Prove that the Gauss-Seidel method converges to the solution of the above system whenever is positive definite. [You may state and use the Householder-John theorem without proof.]
(iii) For which values of does the Jacobi iteration applied to the solution of the above system converge?
Paper 1, Section II, C
comment(i) Discuss briefly the concept of well-posedness of a Cauchy problem for a partial differential equation.
Solve the Cauchy problem
where and denotes the partial derivative with respect to for .
For the case show that the solution satisfies , where the norm on functions of one variable is defined by
Deduce that the Cauchy problem is then well-posed in the uniform metric (i.e. the metric determined by the norm).
(ii) State the Cauchy-Kovalevskaya theorem and deduce that the following Cauchy problem for the Laplace equation,
has a unique analytic solution in some neighbourhood of for any analytic function . Write down the solution for the case , and hence give a sequence of initial data with the property that
whereas , the corresponding solution of , satisfies
for any .
Paper 1, Section II, E
commentConsider a composite system of several identical particles. Describe how the multiparticle state is constructed from single-particle states. For the case of two identical particles, describe how considering the interchange symmetry leads to the definition of bosons and fermions.
Consider two non-interacting, identical particles, each with spin 1 . The singleparticle, spin-independent Hamiltonian has non-degenerate eigenvalues and wavefunctions where labels the particle and In terms of these single-particle wavefunctions and single-particle spin states and , write down all of the two-particle states and energies for:
(i) the ground state;
(ii) the first excited state.
Assume now that is a linear function of . Find the degeneracy of the energy level of the two-particle system for:
(iii) even;
(iv) odd.
Paper 1, Section II, K
commentWhen the real parameter takes value , variables arise independently from a distribution having density function with respect to an underlying measure . Define the score variable and the information function for estimation of based on , and relate to .
State and prove the Cramér-Rao inequality for the variance of an unbiased estimator of . Under what conditions does this inequality become an equality? What is the form of the estimator in this case? [You may assume , and any further required regularity conditions, without comment.]
Let be the maximum likelihood estimator of based on . What is the asymptotic distribution of when ?
Suppose that, for each is unbiased for , and the variance of is exactly equal to its asymptotic variance. By considering the estimator , or otherwise, show that, for .
Paper 1, Section II,
commentState Dynkin's -system -system lemma.
Let and be probability measures on a measurable space . Let be a -system on generating . Suppose that for all . Show that .
What does it mean to say that a sequence of random variables is independent?
Let be a sequence of independent random variables, all uniformly distributed on . Let be another random variable, independent of . Define random variables in by . What is the distribution of ? Justify your answer.
Show that the sequence of random variables is independent.
Paper 1, Section II, 19G
commentState and prove Maschke's Theorem for complex representations of finite groups.
Without using character theory, show that every irreducible complex representation of the dihedral group of order , has dimension at most two. List the irreducible complex representations of up to isomorphism.
Let be the set of vertices of a regular pentagon with the usual action of . Explicitly decompose the permutation representation into a direct sum of irreducible subrepresentations.
Paper 1, Section II, I
comment(i) Let be a power series with radius of convergence in . Show that there is at least one point on the circle which is a singular point of , that is, there is no direct analytic continuation of in any neighbourhood of .
(ii) Let and be connected Riemann surfaces. Define the space of germs of function elements of into . Define the natural topology on and the natural . [You may assume without proof that the topology on is Hausdorff.] Show that is continuous. Define the natural complex structure on which makes it into a Riemann surface. Finally, show that there is a bijection between the connected components of and the complete holomorphic functions of into .
Paper 1, Section I, J
commentVariables are independent, with having a density governed by an unknown parameter . Define the deviance for a model that imposes relationships between the .
From this point on, suppose . Write down the log-likelihood of data as a function of .
Let be the maximum likelihood estimate of under model . Show that the deviance for this model is given by
Now suppose that, under , where are known -dimensional explanatory variables and is an unknown -dimensional parameter. Show that satisfies , where and is the matrix with rows , and express this as an equation for the maximum likelihood estimate of . [You are not required to solve this equation.]
Paper 1, Section II, J
commentA cricket ball manufacturing company conducts the following experiment. Every day, a bowling machine is set to one of three levels, "Medium", "Fast" or "Spin", and then bowls 100 balls towards the stumps. The number of times the ball hits the stumps and the average wind speed (in kilometres per hour) during the experiment are recorded, yielding the following data (abbreviated):
Write down a reasonable model for , where is the number of times the ball hits the stumps on the day. Explain briefly why we might want to include interactions between the variables. Write code to fit your model.
The company's statistician fitted her own generalized linear model using , and obtained the following summary (abbreviated):
Why are LevelMedium and Wind: LevelMedium not listed?
Suppose that, on another day, the bowling machine is set to "Spin", and the wind speed is 5 kilometres per hour. What linear function of the parameters should the statistician use in constructing a predictor of the number of times the ball hits the stumps that day?
Based on the above output, how might you improve the model? How could you fit your new model in ?
Paper 1, Section II, 35A
comment(i) What is the occupation number of a state with energy according to the Fermi-Dirac statistics for a given chemical potential ?
(ii) Assuming that the energy is spin independent, what is the number of electrons which can occupy an energy level?
(iii) Consider a semi-infinite metal slab occupying (and idealized to have infinite extent in the plane) and a vacuum environment at . An electron with momentum inside the slab will escape the metal in the direction if it has a sufficiently large momentum to overcome a potential barrier relative to the Fermi energy , i.e. if
where is the electron mass.
At fixed temperature , some fraction of electrons will satisfy this condition, which results in a current density in the direction (an electron having escaped the metal once is considered lost, never to return). Each electron escaping provides a contribution to this current density, where is the velocity and the elementary charge.
(a) Briefly describe the Fermi-Dirac distribution as a function of energy in the limit , where is the Boltzmann constant. What is the chemical potential in this limit?
(b) Assume that the electrons behave like an ideal, non-relativistic Fermi gas and that and . Calculate the current density associated with the electrons escaping the metal in the direction. How could we easily increase the strength of the current?
Paper 1, Section II, 29J
comment(i) Suppose that the price of an asset at time is given by
where is a Brownian motion, and are positive constants, and is the riskless rate of interest, assumed constant. In this model, explain briefly why the time-0 price of a derivative which delivers a bounded random variable at time should be given by . What feature of this model ensures that the price is unique?
Derive an expression for the time- 0 price of a European call option with strike and expiry . Explain the italicized terms.
(ii) Suppose now that the price of an asset at time is given by
where the and are positive constants, and the other notation is as in part (i) above. Show that the time-0 price of a European call option with strike and expiry written on this asset can be expressed as
where the are constants. Explain how the are characterized.
Paper 1, Section I,
commentShow that is irrational. [The angle is measured in radians.]
Paper 1, Section II, 39C
commentStarting from the equations for the one-dimensional unsteady flow of a perfect gas of uniform entropy, show that the Riemann invariants
are constant on characteristics given by , where is the velocity of the gas, is the local speed of sound, is a constant and is the ratio of specific heats.
Such a gas initially occupies the region to the right of a piston in an infinitely long tube. The gas and the piston are initially at rest with . At time the piston starts moving to the left at a constant velocity . Find and in the three regions
where . What is the largest value of for which is positive throughout region (iii)? What happens if exceeds this value?