Paper 2, Section II, H

Number Fields | Part II, 2013

(i) State Dirichlet's unit theorem.

(ii) Let KK be a number field. Show that if every conjugate of αOK\alpha \in \mathcal{O}_{K} has absolute value at most 1 then α\alpha is either zero or a root of unity.

(iii) Let k=Q(3)k=\mathbb{Q}(\sqrt{3}) and K=Q(ζ)K=\mathbb{Q}(\zeta) where ζ=eiπ/6=(i+3)/2\zeta=e^{i \pi / 6}=(i+\sqrt{3}) / 2. Compute NK/k(1+ζ)N_{K / k}(1+\zeta). Show that

OK={(1+ζ)mu:0m11,uOk}\mathcal{O}_{K}^{*}=\left\{(1+\zeta)^{m} u: 0 \leqslant m \leqslant 11, u \in \mathcal{O}_{k}^{*}\right\}

Hence or otherwise find fundamental units for kk and KK.

[You may assume that the only roots of unity in KK are powers of ζ.\zeta . ]

Typos? Please submit corrections to this page on GitHub.