Paper 2, Section II, A

Mathematical Biology | Part II, 2013

The concentration c(x,t)c(x, t) of insects at position xx at time tt satisfies the nonlinear diffusion equation

ct=x(cmcx)\frac{\partial c}{\partial t}=\frac{\partial}{\partial x}\left(c^{m} \frac{\partial c}{\partial x}\right)

with m>0m>0. Find the value of α\alpha which allows a similarity solution of the form c(x,t)=tαf(ξ)c(x, t)=t^{\alpha} f(\xi), with ξ=tαx\xi=t^{\alpha} x.

Show that

f(ξ)={[αm2(ξ2ξ02)]1/m for ξ0<ξ<ξ00 otherwise f(\xi)=\left\{\begin{array}{cl} {\left[\frac{\alpha m}{2}\left(\xi^{2}-\xi_{0}^{2}\right)\right]^{1 / m}} & \text { for }-\xi_{0}<\xi<\xi_{0} \\ 0 & \text { otherwise } \end{array}\right.

where ξ0\xi_{0} is a constant. From the original partial differential equation, show that the total number of insects c0c_{0} does not change in time. From this result, find a general expression relating ξ0\xi_{0} and c0c_{0}. Find a closed-form solution for ξ0\xi_{0} in the case m=2m=2.

Typos? Please submit corrections to this page on GitHub.