Paper 2, Section II, 32C

Integrable Systems | Part II, 2013

Consider the Hamiltonian system

p=Hq,q=Hp\mathbf{p}^{\prime}=-\frac{\partial H}{\partial \mathbf{q}}, \quad \mathbf{q}^{\prime}=\frac{\partial H}{\partial \mathbf{p}}

where H=H(p,q)H=H(\mathbf{p}, \mathbf{q}).

When is the transformation P=P(p,q),Q=Q(p,q)\mathbf{P}=\mathbf{P}(\mathbf{p}, \mathbf{q}), \mathbf{Q}=\mathbf{Q}(\mathbf{p}, \mathbf{q}) canonical?

Prove that, if the transformation is canonical, then the equations in the new variables (P,Q)(\mathbf{P}, \mathbf{Q}) are also Hamiltonian, with the same Hamiltonian function HH.

Let P=C1p+Bq,Q=Cq\mathbf{P}=C^{-1} \mathbf{p}+B q, \mathbf{Q}=C \mathbf{q}, where CC is a symmetric nonsingular matrix. Determine necessary and sufficient conditions on CC for the transformation to be canonical.

Typos? Please submit corrections to this page on GitHub.