Paper 3, Section II, C

Integrable Systems | Part II, 2013

Let U=U(x,y)U=U(x, y) and V=V(x,y)V=V(x, y) be two n×nn \times n complex-valued matrix functions, smoothly differentiable in their variables. We wish to explore the solution of the overdetermined linear system

vy=U(x,y)v,vx=V(x,y)v\frac{\partial \mathbf{v}}{\partial y}=U(x, y) \mathbf{v}, \quad \frac{\partial \mathbf{v}}{\partial x}=V(x, y) \mathbf{v}

for some twice smoothly differentiable vector function v(x,y)\mathbf{v}(x, y).

Prove that, if the overdetermined system holds, then the functions UU and VV obey the zero curvature representation

UxVy+UVVU=0\frac{\partial U}{\partial x}-\frac{\partial V}{\partial y}+U V-V U=0

Let u=u(x,y)u=u(x, y) and

U=[iλiuˉiuiλ],V=[2iλ2iu22iλuˉ+uˉy2iλuuy2iλ2+iu2]U=\left[\begin{array}{cc} i \lambda & i \bar{u} \\ i u & -i \lambda \end{array}\right], \quad V=\left[\begin{array}{cc} 2 i \lambda^{2}-i|u|^{2} & 2 i \lambda \bar{u}+\bar{u}_{y} \\ 2 i \lambda u-u_{y} & -2 i \lambda^{2}+i|u|^{2} \end{array}\right]

where subscripts denote derivatives, uˉ\bar{u} is the complex conjugate of uu and λ\lambda is a constant. Find the compatibility condition on the function uu so that UU and VV obey the zero curvature representation.

Typos? Please submit corrections to this page on GitHub.