Paper 2, Section I, B
(i) Consider a rigid body with principal moments of inertia . Derive Euler's equations of torque-free motion,
with components of the angular velocity given in the body frame.
(ii) Use Euler's equations to show that the energy and the square of the total angular momentum of the body are conserved.
(iii) Consider a torque-free motion of a symmetric top with . Show that in the body frame the vector of angular velocity precesses about the body-fixed axis with constant angular frequency equal to .
Typos? Please submit corrections to this page on GitHub.