Paper 3, Section II, 35A

Statistical Physics | Part II, 2013

(i) Briefly describe the microcanonical ensemble.

(ii) For quantum mechanical systems the energy levels are discrete. Explain why we can write the probability distribution in this case as

p({ni})={ const >0 for EE({ni})<E+ΔE0 otherwise p\left(\left\{n_{i}\right\}\right)= \begin{cases}\text { const }>0 & \text { for } E \leqslant E\left(\left\{n_{i}\right\}\right)<E+\Delta E \\ 0 & \text { otherwise }\end{cases}

What assumption do we make for the energy interval ΔE\Delta E ?

Consider NN independent linear harmonic oscillators of equal frequency ω\omega. Their total energy is given by

E({ni})=i=1Nω(ni+12)=Mω+N2ω with M=i=1NniE\left(\left\{n_{i}\right\}\right)=\sum_{i=1}^{N} \hbar \omega\left(n_{i}+\frac{1}{2}\right)=M \hbar \omega+\frac{N}{2} \hbar \omega \quad \text { with } \quad M=\sum_{i=1}^{N} n_{i}

Here ni=0,1,2,n_{i}=0,1,2, \ldots is the excitation number of oscillator ii.

(iii) Show that, for fixed NN and MM, the number gN(M)g_{N}(M) of possibilities to distribute the MM excitations over NN oscillators (i.e. the number of different choices {ni}\left\{n_{i}\right\} consistent with MM ) is given by

gN(M)=(M+N1)!M!(N1)!g_{N}(M)=\frac{(M+N-1) !}{M !(N-1) !}

[Hint: You may wish to consider the set of NN oscillators plus M1M-1 "additional" excitations and what it means to choose MM objects from this set.]

(iv) Using the probability distribution of part (ii), calculate the probability distribution p(E1)p\left(E_{1}\right) for the "first" oscillator as a function of its energy E1=n1ω+12ωE_{1}=n_{1} \hbar \omega+\frac{1}{2} \hbar \omega.

(v) If ΔE=ωE\Delta E=\hbar \omega \ll E then exactly one value of MM will correspond to a total energy inside the interval (E,E+ΔE)(E, E+\Delta E). In this case, show that

p(E1)gN1(Mn1)gN(M).p\left(E_{1}\right) \approx \frac{g_{N-1}\left(M-n_{1}\right)}{g_{N}(M)} .

Approximate this result in the limit N1,Mn1N \gg 1, M \gg n_{1}.

Typos? Please submit corrections to this page on GitHub.