Paper 3, Section II, K

Optimization and Control | Part II, 2013

A particle follows a discrete-time trajectory in R2\mathbb{R}^{2} given by

(xt+1yt+1)=(1101)(xtyt)+(t1)ut+(ϵt0)\left(\begin{array}{l} x_{t+1} \\ y_{t+1} \end{array}\right)=\left(\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right)\left(\begin{array}{l} x_{t} \\ y_{t} \end{array}\right)+\left(\begin{array}{c} t \\ 1 \end{array}\right) u_{t}+\left(\begin{array}{c} \epsilon_{t} \\ 0 \end{array}\right)

where {ϵt}\left\{\epsilon_{t}\right\} is a white noise sequence with Eϵt=0E \epsilon_{t}=0 and Eϵt2=vE \epsilon_{t}^{2}=v. Given (x0,y0)\left(x_{0}, y_{0}\right), we wish to choose {ut}t=09\left\{u_{t}\right\}_{t=0}^{9} to minimize C=E[x102+t=09ut2]C=E\left[x_{10}^{2}+\sum_{t=0}^{9} u_{t}^{2}\right].

Show that for some {at}\left\{a_{t}\right\} this problem can be reduced to one of controlling a scalar state ξt=xt+atyt\xi_{t}=x_{t}+a_{t} y_{t}.

Find, in terms of x0,y0x_{0}, y_{0}, the optimal u0u_{0}. What is the change in minimum CC achievable when the system starts in (x0,y0)\left(x_{0}, y_{0}\right) as compared to when it starts in (0,0)(0,0) ?

Consider now a trajectory starting at (x1,y1)=(11,1)\left(x_{-1}, y_{-1}\right)=(11,-1). What value of u1u_{-1} is optimal if we wish to minimize 5u12+C5 u_{-1}^{2}+C ?

Typos? Please submit corrections to this page on GitHub.