Paper 1, Section II, B

General Relativity | Part II, 2012

(i) Using the condition that the metric tensor gabg_{a b} is covariantly constant, derive an expression for the Christoffel symbol Γbca=Γcba\Gamma_{b c}^{a}=\Gamma_{c b}^{a}.

(ii) Show that

Γbaa=12gacgac,b\Gamma_{b a}^{a}=\frac{1}{2} g^{a c} g_{a c, b}

Hence establish the covariant divergence formula

V;aa=1gxa(gVa)V_{; a}^{a}=\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{a}}\left(\sqrt{-g} V^{a}\right)

where gg is the determinant of the metric tensor.

[It may be assumed that a(logdetM)=trace(M1aM)\partial_{a}(\log \operatorname{det} M)=\operatorname{trace}\left(M^{-1} \partial_{a} M\right) for any invertible matrix MM ].

(iii) The Kerr-Newman metric, describing the spacetime outside a rotating black hole of mass MM, charge QQ and angular momentum per unit mass aa, is given in appropriate units by

ds2=(dtasin2θdϕ)2Δρ2+((r2+a2)dϕadt)2sin2θρ2+(dr2Δ+dθ2)ρ2\begin{aligned} d s^{2}=&-\left(d t-a \sin ^{2} \theta d \phi\right)^{2} \frac{\Delta}{\rho^{2}} \\ &+\left(\left(r^{2}+a^{2}\right) d \phi-a d t\right)^{2} \frac{\sin ^{2} \theta}{\rho^{2}}+\left(\frac{d r^{2}}{\Delta}+d \theta^{2}\right) \rho^{2} \end{aligned}

where ρ2=r2+a2cos2θ\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta and Δ=r22Mr+a2+Q2\Delta=r^{2}-2 M r+a^{2}+Q^{2}. Explain why this metric is stationary, and make a choice of one of the parameters which reduces it to a static metric.

Show that, in the static metric obtained, the equation

(gabΦ,b);a=0\left(g^{a b} \Phi_{, b}\right)_{; a}=0

for a function Φ=Φ(t,r)\Phi=\Phi(t, r) admits solutions of the form

Φ=sin(ωt)R(r)\Phi=\sin (\omega t) R(r)

where ω\omega is constant and R(r)R(r) satisfies an ordinary differential equation which should be found.

Typos? Please submit corrections to this page on GitHub.