Paper 3, Section II, J

Stochastic Financial Models | Part II, 2012

(i) Let F={Fn}n=0\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty} be a filtration. Give the definition of a martingale and a stopping time with respect to the filtration F\mathcal{F}.

(ii) State Doob's optional stopping theorem. Give an example of a martingale MM and a stopping time TT such that E(MT)E(M0)\mathbb{E}\left(M_{T}\right) \neq \mathbb{E}\left(M_{0}\right).

(iii) Let SnS_{n} be a standard random walk on Z\mathbb{Z}, that is, S0=0,Sn=X1++XnS_{0}=0, S_{n}=X_{1}+\ldots+X_{n}, where XiX_{i} are i.i.d. and Xi=1X_{i}=1 or 1-1 with probability 1/21 / 2.

Let Ta=inf{n0:Sn=a}T_{a}=\inf \left\{n \geqslant 0: S_{n}=a\right\} where aa is a positive integer. Show that for all θ>0\theta>0,

E(eθTa)=(eθe2θ1)a.\mathbb{E}\left(e^{-\theta T_{a}}\right)=\left(e^{\theta}-\sqrt{e^{2 \theta}-1}\right)^{a} .

Carefully justify all steps in your derivation.

[Hint. For all λ>0\lambda>0 find θ\theta such that Mn=exp(θn+λSn)M_{n}=\exp \left(-\theta n+\lambda S_{n}\right) is a martingale. You may assume that TaT_{a} is almost surely finite.]

Let T=TaTa=inf{n0:Sn=a}T=T_{a} \wedge T_{-a}=\inf \left\{n \geqslant 0:\left|S_{n}\right|=a\right\}. By introducing a suitable martingale, compute E(eθT)\mathbb{E}\left(e^{-\theta T}\right).

Typos? Please submit corrections to this page on GitHub.