Paper 3, Section II, J

Probability and Measure | Part II, 2012

Carefully state and prove the first and second Borel-Cantelli lemmas.

Now let (An:nN)\left(A_{n}: n \in \mathbb{N}\right) be a sequence of events that are pairwise independent; that is, P(AnAm)=P(An)P(Am)\mathbb{P}\left(A_{n} \cap A_{m}\right)=\mathbb{P}\left(A_{n}\right) \mathbb{P}\left(A_{m}\right) whenever mnm \neq n. For N1N \geqslant 1, let SN=n=1N1AnS_{N}=\sum_{n=1}^{N} 1_{A_{n}}. Show that Var(SN)E(SN)\operatorname{Var}\left(S_{N}\right) \leqslant \mathbb{E}\left(S_{N}\right).

Using Chebyshev's inequality or otherwise, deduce that if n=1P(An)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty, then limNSN=\lim _{N \rightarrow \infty} S_{N}=\infty almost surely. Conclude that P(An\mathbb{P}\left(A_{n}\right. infinitely often )=1.)=1 .

Typos? Please submit corrections to this page on GitHub.