Paper 1, Section II, E
Give an account of the variational principle for establishing an upper bound on the ground-state energy of a particle moving in a potential in one dimension.
A particle of unit mass moves in the potential
with a positive constant. Explain why it is important that any trial wavefunction used to derive an upper bound on should be chosen to vanish for .
Use the trial wavefunction
where is a positive real parameter, to establish an upper bound for the energy of the ground state, and hence derive the lowest upper bound on as a function of .
Explain why the variational method cannot be used in this case to derive an upper bound for the energy of the first excited state.
Typos? Please submit corrections to this page on GitHub.