4.II.25J

Probability and Measure | Part II, 2005

Let f:R2Rf: \mathbb{R}^{2} \rightarrow \mathbb{R} be Borel-measurable. State Fubini's theorem for the double integral

yRxRf(x,y)dxdy\int_{y \in \mathbb{R}} \int_{x \in \mathbb{R}} f(x, y) d x d y

Let 0<a<b0<a<b. Show that the function

f(x,y)={exy if x(0,),y[a,b]0 otherwise f(x, y)= \begin{cases}e^{-x y} & \text { if } x \in(0, \infty), y \in[a, b] \\ 0 & \text { otherwise }\end{cases}

is measurable and integrable on R2\mathbb{R}^{2}.

Evaluate

0eaxebxxdx\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} d x

by Fubini's theorem or otherwise.

Typos? Please submit corrections to this page on GitHub.