4.II.22F

Linear Analysis | Part II, 2005

Let XX and YY be normed vector spaces. Show that a linear map T:XYT: X \rightarrow Y is continuous if and only if it is bounded.

Now let X,Y,ZX, Y, Z be Banach spaces. We say that a map F:X×YZF: X \times Y \rightarrow Z is bilinear

F(αx+βy,z)=αF(x,z)+βF(y,z), for all scalars α,β and x,yX,zYF(x,αy+βz)=αF(x,y)+βF(x,z), for all scalars α,β and xX,y,zY.\begin{aligned} &F(\alpha x+\beta y, z)=\alpha F(x, z)+\beta F(y, z), \text { for all scalars } \alpha, \beta \text { and } x, y \in X, z \in Y \\ &F(x, \alpha y+\beta z)=\alpha F(x, y)+\beta F(x, z), \text { for all scalars } \alpha, \beta \text { and } x \in X, y, z \in Y . \end{aligned}

Suppose that FF is bilinear and is continuous in each variable separately. Show that there exists a constant M0M \geqslant 0 such that

F(x,y)Mxy\|F(x, y)\| \leqslant M\|x\|\|y\|

for all xX,yYx \in X, y \in Y.

[Hint: For each fixed xXx \in X, consider the map yF(x,y)y \mapsto F(x, y) from YY to ZZ.]

Typos? Please submit corrections to this page on GitHub.