1.II.20G

Number Fields | Part II, 2005

Let K=Q(2,p)K=\mathbb{Q}(\sqrt{2}, \sqrt{p}) where pp is a prime with p3(mod4).Bycomputingthep \equiv 3 \operatorname{(\operatorname {mod}4)\text {.Bycomputingthe}} relative traces TrK/k(θ)\operatorname{Tr}_{K / k}(\theta) where kk runs through the three quadratic subfields of KK, show that the algebraic integers θ\theta in KK have the form

θ=12(a+bp)+12(c+dp)2\theta=\frac{1}{2}(a+b \sqrt{p})+\frac{1}{2}(c+d \sqrt{p}) \sqrt{2}

where a,b,c,da, b, c, d are rational integers. By further computing the relative norm NK/k(θ)\mathrm{N}_{K / k}(\theta) where k=Q(2)k=\mathbb{Q}(\sqrt{2}), show that 4 divides

a2+pb22(c2+pd2) and 2(ab2cd)a^{2}+p b^{2}-2\left(c^{2}+p d^{2}\right) \quad \text { and } \quad 2(a b-2 c d)

Deduce that aa and bb are even and cd(mod2)c \equiv d(\bmod 2). Hence verify that an integral basis for KK is

1,2,p,12(1+p)2.1, \quad \sqrt{2}, \quad \sqrt{p}, \quad \frac{1}{2}(1+\sqrt{p}) \sqrt{2} .

Typos? Please submit corrections to this page on GitHub.