4.I.9C

Classical Dynamics | Part II, 2005

Define a canonical transformation for a one-dimensional system with coordinates (q,p)(Q,P)(q, p) \rightarrow(Q, P). Show that if the transformation is canonical then {Q,P}=1\{Q, P\}=1.

Find the values of constants α\alpha and β\beta such that the following transformations are canonical: (i) Q=pqβ,P=αq1Q=p q^{\beta}, P=\alpha q^{-1}. (ii) Q=qαcos(βp),P=qαsin(βp)Q=q^{\alpha} \cos (\beta p), P=q^{\alpha} \sin (\beta p).

Typos? Please submit corrections to this page on GitHub.