3.I.9C

Classical Dynamics | Part II, 2005

Define the Poisson bracket {f,g}\{f, g\} between two functions f(qa,pa)f\left(q_{a}, p_{a}\right) and g(qa,pa)g\left(q_{a}, p_{a}\right) on phase space. If f(qa,pa)f\left(q_{a}, p_{a}\right) has no explicit time dependence, and there is a Hamiltonian HH, show that Hamilton's equations imply

dfdt={f,H}.\frac{d f}{d t}=\{f, H\} .

A particle with position vector x\mathbf{x} and momentum p\mathbf{p} has angular momentum L=x×p\mathbf{L}=\mathbf{x} \times \mathbf{p}. Compute {pa,Lb}\left\{p_{a}, L_{b}\right\} and {La,Lb}\left\{L_{a}, L_{b}\right\}.

Typos? Please submit corrections to this page on GitHub.