1.I.8A

Further Complex Methods | Part II, 2005

Explain what is meant by the Papperitz symbol

P{z1z2z3αβγzαβγ}P\left\{\begin{array}{cccc} z_{1} & z_{2} & z_{3} & \\ \alpha & \beta & \gamma & z \\ \alpha^{\prime} & \beta^{\prime} & \gamma^{\prime} & \end{array}\right\}

The hypergeometric function F(a,b;c;z)F(a, b ; c ; z) is defined as the solution of the equation determined by the Papperitz symbol

P{010a01cbcab}P\left\{\begin{array}{ccc} 0 & \infty & 1 \\ 0 & a & 0 \\ 1-c & b & c-a-b \end{array}\right\}

that is analytic at z=0z=0 and satisfies F(a,b;c;0)=1F(a, b ; c ; 0)=1.

Show, explaining each step, that

F(a,b;c;z)=(1z)cabF(ca,cb;c;z)F(a, b ; c ; z)=(1-z)^{c-a-b} F(c-a, c-b ; c ; z)

Typos? Please submit corrections to this page on GitHub.