4.I.6E
The output of a linear perceptron is given by , where is a vector of weights connecting a fluctuating input vector to an output unit. The weights are given random initial values and are then updated according to a learning rule that has a time-constant much greater than the fluctuation timescale of the inputs.
(a) Find the behaviour of for each of the following two rules (i) (ii) , where is a positive constant.
(b) Consider a third learning rule
Show that in a steady state the vector of weights satisfies the eigenvalue equation
where the matrix and eigenvalue should be identified.
(c) Comment briefly on the biological implications of the three rules.
Typos? Please submit corrections to this page on GitHub.