3.I.1H

Number Theory | Part II, 2005

Let π(x)\pi(x) be the number of primes pxp \leqslant x. State the Legendre formula, and prove that

limxπ(x)x=0.\lim _{x \rightarrow \infty} \frac{\pi(x)}{x}=0 .

[You may use the formula

px(11/p)1logx\prod_{p \leqslant x}(1-1 / p)^{-1} \geqslant \log x

without proof.]

Typos? Please submit corrections to this page on GitHub.