1.II .34 B. 34 \mathrm{~B} \quad

Electrodynamics | Part II, 2005

In a frame F\mathcal{F} the electromagnetic fields (E,B)(\mathbf{E}, \mathbf{B}) are encoded into the Maxwell field 4-tensor FabF^{a b} and its dual Fab{ }^{*} F^{a b}, where

Fab=(0ExEyEzEx0BzByEyBz0BxEzByBx0)F^{a b}=\left(\begin{array}{cccc} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{array}\right)

and

Fab=(0BxByBzBx0EzEyByEz0ExBzEyEx0){ }^{*} F^{a b}=\left(\begin{array}{cccc} 0 & -B_{x} & -B_{y} & -B_{z} \\ B_{x} & 0 & E_{z} & -E_{y} \\ B_{y} & -E_{z} & 0 & E_{x} \\ B_{z} & E_{y} & -E_{x} & 0 \end{array}\right)

[Here the signature is (+)(+---) and units are chosen so that c=1c=1.] Obtain two independent Lorentz scalars of the electromagnetic field in terms of E\mathbf{E} and B\mathbf{B}.

Suppose that EB>0\mathbf{E} \cdot \mathbf{B}>0 in the frame F\mathcal{F}. Given that there exists a frame F\mathcal{F}^{\prime} in which E×B=0\mathbf{E}^{\prime} \times \mathbf{B}^{\prime}=\mathbf{0}, show that

E=[(EB)(K+1+K2)]1/2,B=[EBK+1+K2]1/2,E^{\prime}=\left[(\mathbf{E} \cdot \mathbf{B})\left(K+\sqrt{1+K^{2}}\right)\right]^{1 / 2}, \quad B^{\prime}=\left[\frac{\mathbf{E} \cdot \mathbf{B}}{K+\sqrt{1+K^{2}}}\right]^{1 / 2},

where (E,B)\left(E^{\prime}, B^{\prime}\right) are the magnitudes of (E,B)\left(\mathbf{E}^{\prime}, \mathbf{B}^{\prime}\right), and

K=12(E2B2)/(EB)K=\frac{1}{2}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right) /(\mathbf{E} \cdot \mathbf{B})

[Hint: there is no need to consider the Lorentz transformations for E\mathbf{E}^{\prime} and B\mathbf{B}^{\prime}.]

Typos? Please submit corrections to this page on GitHub.