1.II.32D

Principles of Quantum Mechanics | Part II, 2005

A one-dimensional harmonic oscillator has Hamiltonian

H=12mp^2+12mω2x^2=ω(aa+12),H=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2}=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right),

where

a=(mω2)1/2(x^+imωp^),a=(mω2)1/2(x^imωp^) obey [a,a]=1a=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right), \quad a^{\dagger}=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right) \quad \text { obey } \quad\left[a, a^{\dagger}\right]=1

Assuming the existence of a normalised state 0|0\rangle with a0=0a|0\rangle=0, verify that

n=1n!an0,n=0,1,2,|n\rangle=\frac{1}{\sqrt{n !}} a^{\dagger n}|0\rangle, \quad n=0,1,2, \ldots

are eigenstates of HH with energies EnE_{n}, to be determined, and that these states all have unit norm.

The Hamiltonian is now modified by a term

λV=λω(ar+ar)\lambda V=\lambda \hbar \omega\left(a^{r}+a^{\dagger r}\right)

where rr is a positive integer. Use perturbation theory to find the change in the lowest energy level to order λ2\lambda^{2} for any rr. [You may quote any standard formula you need.]

Compute by perturbation theory, again to order λ2\lambda^{2}, the change in the first excited energy level when r=1r=1. Show that in this special case, r=1r=1, the exact change in all energy levels as a result of the perturbation is λ2ω-\lambda^{2} \hbar \omega.

Typos? Please submit corrections to this page on GitHub.