2.II.31C

Integrable Systems | Part II, 2005

Suppose q(x,t)q(x, t) satisfies the mKdVm K d V equation

qt+qxxx+6q2qx=0q_{t}+q_{x x x}+6 q^{2} q_{x}=0

where qt=q/tq_{t}=\partial q / \partial t etc.

(a) Find the 1-soliton solution.

[You may use, without proof, the indefinite integral dxx1x2=arcsechx\int \frac{d x}{x \sqrt{1-x^{2}}}=-\operatorname{arcsech} x.]

(b) Express the self-similar solution of the KKdV\mathrm{KKdV} equation in terms of a solution, denoted by v(z)v(z), of the Painlevé II equation.

(c) Using the Ansatz

dvdz+iv2i6z=0\frac{d v}{d z}+i v^{2}-\frac{i}{6} z=0

find a particular solution of the mKdV equation in terms of a solution of the Airy equation

d2Ψdz2+z6Ψ=0\frac{d^{2} \Psi}{d z^{2}}+\frac{z}{6} \Psi=0

Typos? Please submit corrections to this page on GitHub.