4.II .31 A. 31 \mathrm{~A}

Asymptotic Methods | Part II, 2005

Consider the differential equation

d2wdx2=q(x)w\frac{d^{2} w}{d x^{2}}=q(x) w

where q(x)0q(x) \geqslant 0 in an interval (a,)(a, \infty). Given a solution w(x)w(x) and a further smooth function ξ(x)\xi(x), define

W(x)=[ξ(x)]1/2w(x).W(x)=\left[\xi^{\prime}(x)\right]^{1 / 2} w(x) .

Show that, when ξ\xi is regarded as the independent variable, the function W(ξ)W(\xi) obeys the differential equation

d2Wdξ2={x˙2q(x)+x˙1/2d2dξ2[x˙1/2]}W\frac{d^{2} W}{d \xi^{2}}=\left\{\dot{x}^{2} q(x)+\dot{x}^{1 / 2} \frac{d^{2}}{d \xi^{2}}\left[\dot{x}^{-1 / 2}\right]\right\} W

where x˙\dot{x} denotes dx/dξd x / d \xi.

Taking the choice

ξ(x)=q1/2(x)dx\xi(x)=\int q^{1 / 2}(x) d x

show that equation ()(*) becomes

d2Wdξ2=(1+ϕ)W\frac{d^{2} W}{d \xi^{2}}=(1+\phi) W

where

ϕ=1q3/4d2dx2(1q1/4)\phi=-\frac{1}{q^{3 / 4}} \frac{d^{2}}{d x^{2}}\left(\frac{1}{q^{1 / 4}}\right)

In the case that ϕ\phi is negligible, deduce the Liouville-Green approximate solutions

w±=q1/4exp(±q1/2dx)w_{\pm}=q^{-1 / 4} \exp \left(\pm \int q^{1 / 2} d x\right)

Consider the Whittaker equation

d2wdx2=[14+s(s1)x2]w\frac{d^{2} w}{d x^{2}}=\left[\frac{1}{4}+\frac{s(s-1)}{x^{2}}\right] w

where ss is a real constant. Show that the Liouville-Green approximation suggests the existence of solutions wA,B(x)w_{A, B}(x) with asymptotic behaviour of the form

wAexp(x/2)(1+n=1anxn),wBexp(x/2)(1+n=1bnxn)w_{A} \sim \exp (x / 2)\left(1+\sum_{n=1}^{\infty} a_{n} x^{-n}\right), \quad w_{B} \sim \exp (-x / 2)\left(1+\sum_{n=1}^{\infty} b_{n} x^{-n}\right)

as xx \rightarrow \infty.

Given that these asymptotic series may be differentiated term-by-term, show that

an=(1)nn!(sn)(sn+1)(s+n1)a_{n}=\frac{(-1)^{n}}{n !}(s-n)(s-n+1) \ldots(s+n-1) \text {. }

Typos? Please submit corrections to this page on GitHub.