3.II.29C

Partial Differential Equations | Part II, 2005

Write down a formula for the solution u=u(t,x)u=u(t, x) of the nn-dimensional heat equation

wt(t,x)Δw=0,w(0,x)=g(x),w_{t}(t, x)-\Delta w=0, \quad w(0, x)=g(x),

for g:RnCg: \mathbb{R}^{n} \rightarrow \mathbb{C} a given Schwartz function; here wt=tww_{t}=\partial_{t} w and Δ\Delta is taken in the variables xRnx \in \mathbb{R}^{n}. Show that

w(t,x)g(x)dx(4πt)n/2w(t, x) \leqslant \frac{\int|g(x)| d x}{(4 \pi t)^{n / 2}}

Consider the equation

utΔu=eitf(x),u_{t}-\Delta u=e^{i t} f(x),

where f:RnCf: \mathbb{R}^{n} \rightarrow \mathbb{C} is a given Schwartz function. Show that ()(*) has a solution of the form

u(t,x)=eitv(x),u(t, x)=e^{i t} v(x),

where vv is a Schwartz function.

Prove that the solution u(t,x)u(t, x) of the initial value problem for ()(*) with initial data u(0,x)=g(x)u(0, x)=g(x) satisfies

limt+u(t,x)eitv(x)=0.\lim _{t \rightarrow+\infty}\left|u(t, x)-e^{i t} v(x)\right|=0 .

Typos? Please submit corrections to this page on GitHub.