3.II.28I

Optimization and Control | Part II, 2005

Consider the problem

minimizeE[x(T)2+0Tu(t)2dt]\operatorname{minimize} E\left[x(T)^{2}+\int_{0}^{T} u(t)^{2} d t\right]

where for 0tT0 \leqslant t \leqslant T,

x˙(t)=y(t) and y˙(t)=u(t)+ϵ(t),\dot{x}(t)=y(t) \text { and } \quad \dot{y}(t)=u(t)+\epsilon(t),

u(t)u(t) is the control variable, and ϵ(t)\epsilon(t) is Gaussian white noise. Show that the problem can be rewritten as one of controlling the scalar variable z(t)z(t), where

z(t)=x(t)+(Tt)y(t).z(t)=x(t)+(T-t) y(t) .

By guessing the form of the optimal value function and ensuring it satisfies an appropriate optimality equation, show that the optimal control is

u(t)=(Tt)z(t)1+13(Tt)3.u(t)=-\frac{(T-t) z(t)}{1+\frac{1}{3}(T-t)^{3}} .

Is this certainty equivalence control?

Typos? Please submit corrections to this page on GitHub.