Paper 4 , Section II, 13D

Variational Principles | Part IB, 2021

(a) Consider the functional

I[y]=abL(y,y;x)dxI[y]=\int_{a}^{b} L\left(y, y^{\prime} ; x\right) d x

where 0<a<b0<a<b, and y(x)y(x) is subject to the requirement that y(a)y(a) and y(b)y(b) are some fixed constants. Derive the equation satisfied by y(x)y(x) when δI=0\delta I=0 for all variations δy\delta y that respect the boundary conditions.

(b) Consider the function

L(y,y;x)=1+y2x.L\left(y, y^{\prime} ; x\right)=\frac{\sqrt{1+y^{\prime 2}}}{x} .

Verify that, if y(x)y(x) describes an arc of a circle, with centre on the yy-axis, then δI=0\delta I=0.

(c) Consider the function

L(y,y;x)=1+y2yL\left(y, y^{\prime} ; x\right)=\frac{\sqrt{1+y^{\prime 2}}}{y}

Find y(x)y(x) such that δI=0\delta I=0 subject to the requirement that y(a)=ay(a)=a and y(b)=2abb2y(b)=\sqrt{2 a b-b^{2}}, with b<2ab<2 a. Sketch the curve y(x)y(x).

Typos? Please submit corrections to this page on GitHub.