Paper 1, Section II, H

Statistics | Part IB, 2021

(a) Show that if W1,,WnW_{1}, \ldots, W_{n} are independent random variables with common Exp(1)\operatorname{Exp}(1) distribution, then i=1nWiΓ(n,1)\sum_{i=1}^{n} W_{i} \sim \Gamma(n, 1). [Hint: If WΓ(α,λ)W \sim \Gamma(\alpha, \lambda) then EetW={λ/(λt)}α\mathbb{E} e^{t W}=\{\lambda /(\lambda-t)\}^{\alpha} if t<λt<\lambda and \infty otherwise.]

(b) Show that if XU(0,1)X \sim U(0,1) then logXExp(1)-\log X \sim \operatorname{Exp}(1).

(c) State the Neyman-Pearson lemma.

(d) Let X1,,XnX_{1}, \ldots, X_{n} be independent random variables with common density proportional to xθ1(0,1)(x)x^{\theta} \mathbf{1}_{(0,1)}(x) for θ0\theta \geqslant 0. Find a most powerful test of size α\alpha of H0:θ=0H_{0}: \theta=0 against H1:θ=1H_{1}: \theta=1, giving the critical region in terms of a quantile of an appropriate gamma distribution. Find a uniformly most powerful test of size α\alpha of H0:θ=0H_{0}: \theta=0 against H1:θ>0H_{1}: \theta>0.

Typos? Please submit corrections to this page on GitHub.