Paper 4, Section I, C

Quantum Mechanics | Part IB, 2021

Let Ψ(x,t)\Psi(x, t) be the wavefunction for a particle of mass mm moving in one dimension in a potential U(x)U(x). Show that, with suitable boundary conditions as x±x \rightarrow \pm \infty,

ddtΨ(x,t)2dx=0\frac{d}{d t} \int_{-\infty}^{\infty}|\Psi(x, t)|^{2} d x=0

Why is this important for the interpretation of quantum mechanics?

Verify the result above by first calculating Ψ(x,t)2|\Psi(x, t)|^{2} for the free particle solution

Ψ(x,t)=Cf(t)1/2exp(12f(t)x2) with f(t)=(α+imt)1\Psi(x, t)=C f(t)^{1 / 2} \exp \left(-\frac{1}{2} f(t) x^{2}\right) \quad \text { with } \quad f(t)=\left(\alpha+\frac{i \hbar}{m} t\right)^{-1}

where CC and α>0\alpha>0 are real constants, and then considering the resulting integral.

Typos? Please submit corrections to this page on GitHub.