Let f(θ) be a 2π-periodic function with Fourier expansion
f(θ)=21a0+n=1∑∞(ancosnθ+bnsinnθ)
Find the Fourier coefficients an and bn for
f(θ)={1,−1,0<θ<ππ<θ<2π
Hence, or otherwise, find the Fourier coefficients An and Bn for the 2π-periodic function F defined by
F(θ)={θ,2π−θ,0<θ<ππ<θ<2π
Use your answers to evaluate
r=0∑∞2r+1(−1)r and r=0∑∞(2r+1)21