Paper 4, Section II, G
Let and be subgroups of a finite group . Show that the sets , partition . By considering the action of on the set of left cosets of in by left multiplication, or otherwise, show that
for any . Deduce that if has a Sylow -subgroup, then so does .
Let with a prime. Write down the order of the group . Identify in a Sylow -subgroup and a subgroup isomorphic to the symmetric group . Deduce that every finite group has a Sylow -subgroup.
State Sylow's theorem on the number of Sylow -subgroups of a finite group.
Let be a group of order , where are prime numbers. Show that if is non-abelian, then .
Typos? Please submit corrections to this page on GitHub.