Paper 4, Section II, B

Complex Methods | Part IB, 2021

Let f(t)f(t) be defined for t0t \geqslant 0. Define the Laplace transform f^(s)\widehat{f}(s) of ff. Find an expression for the Laplace transform of dfdt\frac{d f}{d t} in terms of f^\widehat{f}.

Three radioactive nuclei decay sequentially, so that the numbers Ni(t)N_{i}(t) of the three types obey the equations

dN1dt=λ1N1dN2dt=λ1N1λ2N2dN3dt=λ2N2λ3N3\begin{aligned} \frac{d N_{1}}{d t} &=-\lambda_{1} N_{1} \\ \frac{d N_{2}}{d t} &=\lambda_{1} N_{1}-\lambda_{2} N_{2} \\ \frac{d N_{3}}{d t} &=\lambda_{2} N_{2}-\lambda_{3} N_{3} \end{aligned}

where λ3>λ2>λ1>0\lambda_{3}>\lambda_{2}>\lambda_{1}>0 are constants. Initially, at t=0,N1=N,N2=0t=0, N_{1}=N, N_{2}=0 and N3=nN_{3}=n. Using Laplace transforms, find N3(t)N_{3}(t).

By taking an appropriate limit, find N3(t)N_{3}(t) when λ2=λ1=λ>0\lambda_{2}=\lambda_{1}=\lambda>0 and λ3>λ\lambda_{3}>\lambda.

Typos? Please submit corrections to this page on GitHub.