Paper 2, Section II, E

Analysis and Topology | Part IB, 2020

Let C[0,1]C[0,1] be the space of continuous real-valued functions on [0,1][0,1], and let d1,dd_{1}, d_{\infty} be the metrics on it given by

d1(f,g)=01f(x)g(x)dx and d(f,g)=maxx[0,1]f(x)g(x)d_{1}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x \quad \text { and } \quad d_{\infty}(f, g)=\max _{x \in[0,1]}|f(x)-g(x)|

Show that id : (C[0,1],d)(C[0,1],d1)\left(C[0,1], d_{\infty}\right) \rightarrow\left(C[0,1], d_{1}\right) is a continuous map. Do d1d_{1} and dd_{\infty} induce the same topology on C[0,1]C[0,1] ? Justify your answer.

Let dd denote for any mNm \in \mathbb{N} the uniform metric on Rm:d((xi),(yi))=maxixiyi\mathbb{R}^{m}: d\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\max _{i}\left|x_{i}-y_{i}\right|. Let PnC[0,1]\mathcal{P}_{n} \subset C[0,1] be the subspace of real polynomials of degree at most nn. Define a Lipschitz map between two metric spaces, and show that evaluation at a point gives a Lipschitz map (C[0,1],d)(R,d)\left(C[0,1], d_{\infty}\right) \rightarrow(\mathbb{R}, d). Hence or otherwise find a bijection from (Pn,d)\left(\mathcal{P}_{n}, d_{\infty}\right) to (Rn+1,d)\left(\mathbb{R}^{n+1}, d\right) which is Lipschitz and has a Lipschitz inverse.

Let P~nPn\tilde{\mathcal{P}}_{n} \subset \mathcal{P}_{n} be the subset of polynomials with values in the range [1,1][-1,1].

(i) Show that (P~n,d)\left(\tilde{\mathcal{P}}_{n}, d_{\infty}\right) is compact.

(ii) Show that d1d_{1} and dd_{\infty} induce the same topology on P~n\tilde{\mathcal{P}}_{n}.

Any theorems that you use should be clearly stated.

[You may use the fact that for distinct constants aia_{i}, the following matrix is invertible:

(1a0a02a0n1a1a12a1n1anan2ann)\left(\begin{array}{ccccc} 1 & a_{0} & a_{0}^{2} & \ldots & a_{0}^{n} \\ 1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n} \end{array}\right)

Typos? Please submit corrections to this page on GitHub.