Paper 3, Section II, D

Numerical Analysis | Part IB, 2016

(a) Determine real quadratic functions a(x),b(x),c(x)a(x), b(x), c(x) such that the interpolation formula,

f(x)a(x)f(0)+b(x)f(2)+c(x)f(3),f(x) \approx a(x) f(0)+b(x) f(2)+c(x) f(3),

is exact when f(x)f(x) is any real polynomial of degree 2 .

(b) Use this formula to construct approximations for f(5)f(5) and f(1)f^{\prime}(1) which are exact when f(x)f(x) is any real polynomial of degree 2 . Calculate these approximations for f(x)=x3f(x)=x^{3} and comment on your answers.

(c) State the Peano kernel theorem and define the Peano kernel K(θ)K(\theta). Use this theorem to find the minimum values of the constants α\alpha and β\beta such that

f(1)13[f(0)+3f(2)f(3)]αmaxξ[0,3]f(2)(ξ)\left|f(1)-\frac{1}{3}[f(0)+3 f(2)-f(3)]\right| \leqslant \alpha \max _{\xi \in[0,3]}\left|f^{(2)}(\xi)\right|

and

f(1)13[f(0)+3f(2)f(3)]βf(2)1\left|f(1)-\frac{1}{3}[f(0)+3 f(2)-f(3)]\right| \leqslant \beta\left\|f^{(2)}\right\|_{1}

where fC2[0,3]f \in C^{2}[0,3]. Check that these inequalities hold for f(x)=x3f(x)=x^{3}.

Typos? Please submit corrections to this page on GitHub.