Paper 4, Section II, E
Let be a Noetherian ring and let be a finitely generated -module.
(a) Show that every submodule of is finitely generated.
(b) Show that each maximal element of the set
is a prime ideal. [Here, maximal means maximal with respect to inclusion, and
(c) Show that there is a chain of submodules
such that for each the quotient is isomorphic to for some prime ideal .
Typos? Please submit corrections to this page on GitHub.