Paper 1, Section II, E
(a) Let be an ideal of a commutative ring and assume where the are prime ideals. Show that for some .
(b) Show that is a maximal ideal of . Show that the quotient ring is isomorphic to
(c) For , let be the ideal in . Show that is a maximal ideal. Find a maximal ideal of such that for any . Justify your answers.
Typos? Please submit corrections to this page on GitHub.